Author's Accepted Manuscript

Magnetic and magnetocaloric properties of polycrystalline La_{0.48}Ca_{0.52}MnO₃ compound at low temperature: influence of glassy magnetic state

Kalipada Das, I. Das

www.elsevier.com/locate/physb

PII: S0921-4526(17)30018-2

DOI: http://dx.doi.org/10.1016/j.physb.2017.01.010

Reference: PHYSB309786

To appear in: Physica B: Physics of Condensed Matter

Received date: 30 November 2016 Revised date: 30 December 2016 Accepted date: 11 January 2017

Cite this article as: Kalipada Das and I. Das, Magnetic and magnetocalori properties of polycrystalline La_{0.48}Ca_{0.52}MnO₃ compound at low temperature influence of glassy magnetic state, *Physica B: Physics of Condensed Matter* http://dx.doi.org/10.1016/j.physb.2017.01.010

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Magnetic and magnetocaloric properties of polycrystalline La_{0.48}Ca_{0.52}MnO₃ compound at low temperature: influence of glassy magnetic state

Kalipada Das*1, a) and I. Das1

CMP Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India

We report the magnetic, magnetocaloric and electrical transport properties of polycrystalline bulk $La_{0.48}Ca_{0.52}MnO_3$ compound. In addition to earlier reported properties viz. charge ordering and antiferromagnetic ordering, we address the presence of glassy magnetic phase at low temperature (T < 40 K) in this compound. Studies on magnetic and magnetocaloric properties reveal that, pronounced glassy behaviour in this compound is due to presence of ferromagnetic clusters in the low-temperature region. In addition to that, analysis of low-temperature x-ray diffraction measurements indicate increasing crystallographic unit cell volume which is attributed to the enhancement of e_g -electron bandwidth at low temperature.

PACS numbers: 75.47.Lx, 73.63.Bd

Accepte

Keywords: Manganite, Spin glass, Magnetocaloric effect

Present Address (K. Das): Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. Fax: +91-33-2473-2805

^{a)}Electronic mail: kalipadadasphysics@gmail.com

Download English Version:

https://daneshyari.com/en/article/5492192

Download Persian Version:

https://daneshyari.com/article/5492192

<u>Daneshyari.com</u>