Author's Accepted Manuscript

XANES studies of titanium dioxide nanoparticles synthesized by using *Peltophorum pterocarpum* plant extract

S. Saravanan, M. Balamurugan, A. Lippitz, E. Fonda, S. Swaraj

www.elsevier.com/locate/physb

PII: S0921-4526(16)30419-7

DOI: http://dx.doi.org/10.1016/j.physb.2016.09.011

Reference: PHYSB309634

To appear in: Physica B: Physics of Condensed Matter

Received date: 8 July 2016

Revised date: 8 September 2016 Accepted date: 10 September 2016

Cite this article as: S. Saravanan, M. Balamurugan, A. Lippitz, E. Fonda and S Swaraj, XANES studies of titanium dioxide nanoparticles synthesized by using *Peltophorum pterocarpum* plant extract, *Physica B: Physics of Condense Matter*, http://dx.doi.org/10.1016/j.physb.2016.09.011

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

XANES studies of titanium dioxide nanoparticles synthesized by using *Peltophorum pterocarpum* plant extract

S. Saravanan¹, M. Balamurugan^{1*}, A. Lippitz², E. Fonda³, S. Swaraj³
¹Centre for Photonics and Nanotechnology, Sona College of Technology, Salem-636 005, Tamilnadu, India ²Bundesanstalt für Materialforschung und -prüfung, 6.8 Oberflächenanalytik und Grenzflächenchemie Unter den Eichen 44 – 46, 12203 Berlin, Germany ³Synchrotron SOLEIL, L'ormes des merisiers, Saint Aubin BP-48, 91192 Gif-Sur-Yvette Cedex, France

Abstract

The preparation and characterization of a Titanium dioxide (TiO₂) by a simple, cost effective, facile and eco-friendly green synthesis method using *Peltophorum pterocarpum* plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO₂ NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO₂ phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO₂ NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase:rutile phase ratio can be obtained by controlling the experimental conditions.

Keywords: Nanostructures; Semiconductors; TEM; powder diffraction; phase transitions; XANES.

1. Introduction

^{*}Corresponding Author. Mr. M. Balamurugan, Centre for Photonics and Nanotechnology, Department of Science, Sona College of Technology, Junction Mani Road, Sona Nagar, Salem – 636 005, Tamilnadu, INDIA, Tel: +91 – 0427 – 4099892, Fax: +91 – 0427 – 4099888. chem.muruga@gmail.com

Download English Version:

https://daneshyari.com/en/article/5492224

Download Persian Version:

 $\underline{https://daneshyari.com/article/5492224}$

Daneshyari.com