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A B S T R A C T

In this paper, we present calculations for two second-order phase transitions in (110) Fe0.5Co0.5 thin films with
11, 15, and 19 monoatomic layers. The lattice and magnetic transitions are based on thermodynamic
equilibrium considerations of the magnetic alloy. The procedure proposed by Valenta and Sukiennicki was
applied to calculate the composition x(i), the lattice order parameter t(i), and the magnetic order parameter σ(i)
as a function of temperature T. We confirmed that both phase transitions, lattice and magnetic, are of the
second order, in accordance with experimental results in the literature. The obtained behavior of these
parameters indicates their inhomogeneity due to the boundary conditions on the surfaces of the thin film.

1. Introduction

The order–disorder phenomenon for binary alloys has been studied
both theoretically and experimentally by many authors [1–12]. In
recent years, two different surface-effect phenomena in thin-film alloys
have been studied [4,13–15]: surface disordering and surface melting.
The difference between these two phenomena is that melting results in
the destruction of the lattice, while disordering preserves the lattice
and atoms are exchanged at specific lattice sites [13]. In addition, the
surface effects on the ferromagnetic and lattice order–disorder phase
transitions in thin films of binary AB3 type alloys have also been
studied. Although the results indicated their simultaneous interdepen-
dence [16], not many theoretical studies have been performed. In the
present case, we studied a three-dimensional system as a composition
of two-dimensional layers. The formulations reported by Hill [17] in
the context of small particles can be applied to the film structure when
we treat a thin film as a system divided into subsystems equivalent to
two-dimensional monoatomic layers (ML) parallel to the surface, lying
in a given crystallographic direction [18]. The motivation for this
research is to predict that Fe0.5Co0.5 (110) thin films, one of the most
stable alloys, have a behavior similar to bulk Fe0.5Co0.5: when the
temperature of the thin films increases, they undergo a second-order
phase transition [19,20]. We report that the heat capacity of this alloy
experiences a discontinuity near the bulk crystalline temperature phase
transition (1002 K) and bulk magnetic temperature phase transition
(1254 K).

We describe the phase transition in a thin film of Fe0.5Co0.5 (110)
alloy using two order parameters: one is the lattice order parameter t(i)

and the other is the magnetic order parameter σ(i), where i=1, 2,…,n
denotes the position of the 2D monoatomic parallel layers in the alloy
thin film. In the thin-film construction, the chemical composition x(i)
can be inhomogeneous in the film thickness direction. Taking this fact
into account, we obtain the equilibrium values of x(i), t(i), and σ(i) by
means of a minimization procedure applied to the Helmholtz free
energy of the system with respect to all of these parameters. This
procedure was applied to analyze the case of a bcc Fe0.5Co0.5 (110) thin
film composed of 11, 15, and 19 monoatomic layers (MLs). We studied
the properties of Fe0.5Co0.5 (110) thin films near the lattice and
magnetic order-disorder transition temperatures, and we describe the
degree of ordering of the atoms in the lattice and the degree of ordering
of the spins of the atoms. The order parameters are quantitative
measurements of the lattice order and magnetization order of the
sample, respectively. The values t=1 and σ=1 indicate that the sample
is completely ordered, while t=0 and σ=0 indicate that the sample is
completely disordered.

The need to study FeCo (110) thin films is because nanotechnology
is a new branch of scientific research, where ferromagnetic materials
have important applications as the fabrication of nanoscale objects,
hard drives for data storage or his use in materials for hydrogen
storage; there are not enough results about Fe0.5Co0.5 thin films with
those characteristics.

2. Theory

The main ideas of this study were taken from the work of
Sukiennicki [11], who studied the behavior of ferromagnetic thin films
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with five monolayers of an fcc binary alloy, and Castillo-Alvarado [4],
who studied the long-range order parameter of 11 monolayers of an fcc
binary alloy. Our main goal in this work is to include the order
parameter as a long-range magnetic order parameter in the case of 11,
15, and 19 MLs in order to compare our results with the results of bulk
FeCo.

Let us consider a bcc binary alloy A0.5B0.5 (Fig. 1) with interaction
between the first nearest neighbor atoms, where we suppose that, at
low temperatures (near 0 K), all atoms are fixed in the positions shown,
with their spins pointing up. We divide this crystallographic structure
into two sublattices: the α sublattice consists of the sites in the corners,
while the β sublattice consists of the sites in the center of the unit cell..

We introduce eight site probabilities: Pα
A↑, Pα

A↓, Pβ
A↑, Pβ

A↓, Pα
B↑, Pα

B↓

Pβ
B↑, and Pβ

B↓; the group of site probabilities corresponds to the
probabilities of finding atoms A or B with spins up (↑), or spins down
(↓), at sublattices α or β. These probabilities are normalized as follows:

P i P i P i P i( )+ ( )=1, ( )+ ( )=1α
A

α
B

β
B

β
A

(1)

and:

P i P i P( )= ( )+ (i)γ
C

γ
C

γ
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(2)

The concentration of A atoms in layer i is given as follows:

x i P i F P i F( )= ( ) + ( )α
A

α β
A

β (3)

The concentration of B atoms in the same layer i is written as
follows:

y i x i P i F P i F( )=1 − ( )= ( ) + ( )α
B

α β
B

β (4)

We define the crystalline long-range order parameter as follows:

t i P i P i P i P i( )= ( )− ( )= ( )− ( )α
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β
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And the magnetic order parameter as follows:
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C γ
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, (6)

(γ α β= , ; C=A, B and Fγ denotes the relative number of sites γ;
P i σ i P i P( ) ( )= ( )− (i)γ

C
γ
C

γ
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γ
C↑ ↓ ).

Using Eqs. (1)–(6), it is possible to write the site probabilities in
terms of x(i), t(i), and σ i( )C

γ as follows:
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Next we introduce the Helmholtz free energy:

x i t i σ i x i t i σ i x i t i σ iF( ( ), ( ), ( ), T) = U( ( ), ( ), ( ))–T S( ( ), ( ), ( )) (8)

where U is the internal energy, T is the temperature, and S is the
entropy. In plane i, one atom A in sublattice α has atoms B and A as its
first neighbors in sublattice α or β of the plane i, i+1, or i_1. The

internal energy U( ) consists of two parts connected with the lattice U( )l
and magnetic U( )m ordering:

U U U= +l m (9)

which are expressed respectively as follows [19]:
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where N is the total number of atoms, i, i′= 1,…,n, γ γ α β, ´ = , , σ ,σ ′= ↑,
↓ (spin up or spin down) and C,C′=A, B.

Energy VCC´
ii´ in Eq. (10) describes the interaction between two

nearest neighboring atoms C and C´ in the sense of the Bragg-Williams
approximation [4] in the same plane or between two consecutive
planes. In a similar manner, the magnetic part of the energy can be
characterized by J σσ´CC´

ii in Eq. (11), which describes the magnetic
interaction of the two nearest neighboring atoms C and C´ in the same
layer or between two consecutive layers. The explicit form of the
internal energy becomes as follows:
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The entropy term (Bragg-Williams approximation) is calculated in
the usual manner as follows [4]:

∑S x t σ k N P i lnP i( , , )=− ( ) ( )B
C γ σ i

γ
Cσ

γ
Cσ2

, , , (13)

where P i( )γ
Cσ are the probabilities expressed by Eq. (7) and kB is

Boltzmann's constant.
In Fig. 2(a), we present consecutive planes (plane i and plane i+1)

parallel to (110), and in Fig. 2(b), we show the number of nearest
neighbors of plane i. The given site α is surrounded by the number of
nearest neighbor β sites, which is rαβ(i)=4. Similarly, rβα(i)=4, rαα(i)=0,
and rββ(i)=0. We obtain the number of nearest neighbors between
consecutive planes from Fig. 2(a): r i( ±1)αβ =2, r i( ±1)βα =2, r i( ±1)αα =0,
and r i( ±1)ββ =0. The magnetic interaction is defined by three para-
meters, whose values are similar to those given by Morán-López [3], for
the ferromagnetic case (in absolute temperature units): J =394AA and
J =498BB ; we propose instead J J J J= =2.41( + )AB BA AA BB , V J=1.16AA AA,
V J=1.4BB BB, and V V J= =0.56AB BA AB..

Fig. 1. Crystallographic structure of the bcc Fe0.5Co0.5 alloy.
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