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A B S T R A C T

We present a model which derives typical relaxor characteristics from simple and plausible microscopic
assumptions. The model is based on charges which fluctuate thermally activated in double well potentials. The
double well potentials are asymmetric due to disorder in the system. The electrostatic interaction between the
charges is considered via a mean field approach. This model yields the typical relaxor features: we find high
susceptibilities in a broad temperature range with dynamics following the Vogel–Fulcher law. In the framework
of the model no spontaneous polarization arises at cooling without strong external field in accordance to
experimental findings for relaxors. Furthermore the model yields hysteresis loops which depend on the
amplitude of the external field and which become more and more thin and deformed above the maximum
temperature of the susceptibility.

1. Introduction

Relaxors, due to their exceptional dielectric properties, are inter-
esting candidates for many applications, e.g., in energy storage [1–4].

Typical relaxors have high susceptibilities, comparable to the
susceptibilities in ferroelectrics. In contrast to ferroelectrics,
where the susceptibility has a pole at the Curie temperature, relaxors
have high susceptibilities in a broad temperature range [5–8]. The
maximum of the susceptibility does not clearly mark a phase
transition. The temperature dependence of the dynamics of the
susceptibility in relaxors can be described by the empirical Vogel–
Fulcher law [8–11].

In alternating fields with sufficient high amplitudes relaxors have
polarization hysteresis loops like ferroelectrics [5,7]. This ferroelectric-
like response slowly degenerates to the paraelectric response above the
temperature of the maximum of the susceptibility [5,7]. Furthermore
no spontaneous polarization occurs in relaxors without external field
[5,7].

Relaxor characteristics have been observed e.g. in disordered
perovskites [5,8] but also in polymers (e.g. defect-modified poly(viny-
lidene fluoride)) [1,12–14]. A common characteristic of all relaxor
materials is disorder [6–8,11,15–17].

Dielectric properties can be simulated by a model based on charges
fluctuating thermally activated in double well potentials [18]. In
this work we extend this model by considering intrinsic asymmetries
of the double wells caused by disorder in the system. In that way we
derive a model which enables simulating the typical features of relaxors
[19,20].

2. Model

The macroscopic dielectric properties depend on the behavior of the
microscopic dipole moments in the material. In this work microscopic
dipole moments are modeled with charges which fluctuate thermally
activated in double well potentials (Fig. 1) [18]. The local electric field
Eloc also deforms the double well potentials: each double well gets an
extrinsic asymmetry q R E· · loc (q charge, R distance between the wells).
In a first step to consider the effect of disorder in the material, we
extend the model with intrinsic asymmetries of the double well
potentials [19]. In contrast to the extrinsic asymmetry, an intrinsic
asymmetry V is caused by heterogeneous surroundings and can exist
even without external field or interactions. In Appendix B it is
illustrated how this asymmetry can be deduced from electrostatic
calculations.

The local electric field Eloc at a double well potential is the
superposition of the externally applied field Ea and the fields of the
other charges. For non-interacting systems Eloc is equal to Ea. To
consider the electrostatic interactions inside the system we employ a
mean field approach which was originally developed by Weiss [21,22]
to describe magnetic materials and which was later successfully applied
to ferroelectrics [18,23–26]. Here all double wells are influenced by the
same mean local field Eloc which includes the applied field Ea and a
mean interaction field proportional to the polarization P:

E E βP= + .loc a (1)

The coupling parameter β describes the strength of the interactions
inside the system. The linear relation between local field and polariza-
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tion has been confirmed by microscopic Monte–Carlo simulations
considering all electrostatic interactions (see Appendix A).

The macroscopic polarization P is given by the microscopic dipole
moment p q R= · /2 of the displaced charges and by the densities n1 and
n2 of charges in well 1 or in well 2 respectively (Fig. 1): P p n n= ·( − )2 1 .
The densities follow the rate equations:

d
dt

n w n w n d
dt

n= − + = −1 12 1 21 2 2 (2)

and the condition n n n const+ = =1 2 (n total density of the double
wells). The transition rates w12 and w21 of the charges at the
temperature T depend on the average barrier height W0 and on the
intrinsic and extrinsic asymmetries of the double well potentials ( τ1/ 0
phonon frequency):
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Here V has a positive sign for an intrinsic asymmetry on the left side, a
negative sign for an intrinsic asymmetry on the right side (Fig. 1).

The rate equation (2) yields for the polarization the relaxation
equation [18,24]

d
dt
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P P= 1 ( − ).∞ (4)

That means the polarization P depends on the equilibrium polarization
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and on the relaxation time
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Without interaction and intrinsic asymmetry, (4) reduces to the classic
Debye relaxation. With interaction between the charges P∞ and τ in (4)
are functions of the polarization itself via local field Eloc according to
(1). In that way we have a feedback loop for P.

Generally one expects in disordered materials a distribution of
barrier heights W0, of intrinsic asymmetries V, of distances R between
the double wells and of angles θ between the field and the axis of the
double wells. With a distribution of R and θ one has also a distribution
of the effective microscopic dipole moments p. Because of the

distributions one has to solve a system of relaxation equations of the
form (4) which differ in P∞ and in τ according to Eqs. (5) and (6). The
total polarization is the sum of all polarization contributions given by
the different relaxation equations. All the relaxation equations are
coupled via the local field which depends on the total polarization
according to (1).

Here we consider a first simple approach for disordered systems
where all charges in double wells have the same barrier height and
cause the same effective dipole moment. The double wells differ only in
the intrinsic asymmetry: 50% have an intrinsic asymmetry on the left
side, 50% on the right side. With total dipole density n, a density n/2
belongs to left asymmetric double wells and the other half belongs to
right asymmetric double wells. In this case the polarization is the sum
of the contributions Pleft and Pright of the charges in double wells with
V on the left side and on the right side respectively: P P P= +left right.
Each polarization contribution follows a relaxation equation of the
form (4). The two relaxation equations differ in the sign of V in P∞ and
in τ according to Eqs. (5) and (6). Fig. 2 depicts qualitatively the static
polarization for a system with symmetrical double wells and for a
system with half left asymmetric double wells and half right asym-
metric double wells. The electrostatic interaction between the charges
couples the relaxation equations for Pleft and Pright via the local field
according to (1).

3. Computation method

In the static case, the time derivative of the polarization is zero and
the differential Eq. (4) reduces to the algebraic equation

P P P( ) − = 0.∞ (7)

The static susceptibility is computed from the static polarizations, i.e.
the solutions of (7), via (here: EΔ = 10 MV/cma

−12 )

χ P E P E E= [ (Δ ) − (−Δ )]/(2Δ ).stat a a a (8)

The integration of the relaxation equations (4) for all polarization
contributions yields the dynamic polarization P(t) in the time domain.

In this work we also present computation results for the ac – small
signal response. To that we apply an oscillating external field with a
frequency f and with a small amplitude Ea:
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Fig. 1. Basic model element: A charge q fluctuates thermally activated in a double well
potential (activation energy=barrier heightW0, distance R of the wells). The potential can
be symmetrical (black curve), V=0, or it has an intrinsic asymmetry V due to disorder in
the sample (blue). The local electric field Eloc evokes an additional extrinsic asymmetry
(red). The transition rates w12 and w21 depend on W0, on the intrinsic and extrinsic
asymmetry and on the temperature T. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Static polarization P V( = 0)∞ of a system consisting of charges in symmetrical

double wells and static polarization P V P V(+ ) + (− )∞ ∞ with V ≠ 0 of a system with half

left asymmetric double wells and half right asymmetric double wells. P V( = 0)∞ according

to (5).
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