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a b s t r a c t 

A method is available that enables consistent study of the stochastic behavior of a system that obeys 

purely diffusive evolution equations. This method has been applied to a superconducting loop with 

nonuniform temperature, with average temperature close to T c . It is found that a flux-dependent average 

potential difference arises along the loop, proportional to the temperature gradient and most pronounced 

in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 

0.3 �0 , average temperatures slightly below the critical temperature, thermal coherence length of the or- 

der of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal 

coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It 

differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field 

rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In 1886, while studying the Hall effect in bismuth, Etting- 

shausen and Nernst [1] noticed an unexpected perpendicular cur- 

rent flow when one side of the sample was heated. 

The Nernst effect in low temperature superconductors was de- 

tected long ago [2] , and in high temperature superconductors the 

effect was detected [3] soon after their discovery. Ullah and Dorsey 

[4,5] described the effect theoretically by means of the time- 

dependent Ginzburg–Landau model (TDGL). Nernst signals have 

been observed in an extended region above the critical tempera- 

ture in high- T c materials [6] and in conventional superconductors 

[7] . 

We will see that thermal fluctuations are an essential ingredi- 

ent for the appearance of the Nernst effect in the situations that 

we will study. The following section is therefore devoted to de- 

scribe how these fluctuations can be taken into account. 

2. Thermal fluctuations in quasi-1D superconducting samples 

The simplest model for the description of the evolution of a 

superconducting sample is TDGL [8,9] . This description involves 

a complex field, dubbed ‘the order parameter,’ ψ , and the vector 

potential, A . We choose a gauge in which the scalar electric po- 

tential vanishes. In a numerical analysis, space is discretized into 

small cells, and the order parameter and the vector potential in 

cell number j are denoted by ψ j , and A j . TDGL asserts that the 
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evolution of ψ j is given by 

d Re ψ j 

d t 
= −�ψ, j 

∂G 

∂ Re ψ j 

; d Im ψ j 

d t 
= −�ψ, j 

∂G 

∂ Im ψ j 

, (1) 

where t is the time, �ψ ,j is the relaxation rate, and G is the free 

energy of the system. For a wire of length L , with a uniform cross 

section that is sufficiently small to neglect the screening of the 

magnetic field, divided into N cells of equal length, with periodic 

boundaries and appropriate normalization of the order parameter, 

the free energy can be written as 

G = 

Lk B T c 

Nξβ
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j=0 

{
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+ 

I h̄ 

2 e 

N−1 ∑ 

j=0 

˜ A j , (2) 

where k B is the Boltzmann constant, T j is the temperature at site j, 

ξ (0) is the coherence length at zero temperature, ˜ A is the compo- 

nent of A along the wire multiplied by 2 eL / � cN, e is the absolute 

value of the electronic charge, c is the speed of light, the asterisk 

denotes complex conjugation, I is the total current along the sam- 

ple, and the length ξβ is 

ξβ = 

(
a �2 

0 

32 π3 κ2 k B T c 

)1 / 3 

, (3) 
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where a is the cross sectional area of the sample, �0 = π h̄ /ec is 

the quantum of flux, and κ is the Ginzburg–Landau parameter. For 

a uniform wire the relaxation rate is independent of j and its value 

is �ψ 

= ND/ 2 ξβLk B T c , where D is the diffusivity. 

The meaning of ξβ is that of the typical ‘length of a fluctuation.’ 

With the notation of [10] , and ignoring the electromagnetic field, 

the free energy of the superconducting wire at T = T c is given by 

G = a 

∫ 
d s 

( 

β

2 

| 
| 4 + γ h̄ 

2 

∣∣∣∣d


d s 

∣∣∣∣
2 
) 

, (4) 

where s is the arc length along the wire and 
 is the order param- 

eter. The first term in this expression “pushes” the order parame- 

ter towards zero, and the second term pushes it towards unifor- 

mity, but due to thermal fluctuations, there will be regions where 


 differs appreciably from zero. Denoting by 
̄ the typical value 

of | 
| in such regions and by ξβ the typical extension of these re- 

gions, the typical value of |d 
/d s | is 
̄/ξβ . We expect that for a 

region like this the contribution of each of the terms in (4) will be 

of the order of k B T c , namely, aξββ
̄4 ∼ aγ h̄ 2 
̄2 /ξβ ∼ k B T c . From 

here we obtain ξβ ∼ ( a γ 2 � 

4 / βk B T c ) 
1/3 , and using equation (1.28) 

in [10] we arrive at expression (3) . The order parameter that we 

have used above is ψ = 
/ ̄
. 

Since d A /d t is proportional to the electric field, the evolution of 
˜ A j follows from Ohm’s law, that can be written as 

d ̃

 A j 

d t 
= −�A, j 

∂G 

∂ ̃  A j 

(5) 

with �A, j = uDL/ 2 Nξ 3 
β

k B T c , where in the case of a dirty material 

with no magnetic impurities u = π4 / 14 ζ (3) = 5 . 79 [9,10] . 

The range of validity of TDGL is very limited [11] . A model that 

is valid as long as there is local equilibrium is due to Kramer 

and Watts–Tobin [12,13] . Writing ψ j = | ψ j | exp (i χ j ) , this model 

assigns different relaxation rates to | ψ j | and to χ j : 

d | ψ j | 
d t 

= − �ψ √ 

1 + K| ψ j | 2 
∂G 

∂| ψ j | , 

d χ j 

d t 
= −�ψ 

√ 

1 + K| ψ j | 2 
| ψ j | 2 

∂G 

∂χ j 

, (6) 

with K ≈ 15 Dk B T c τ
2 
ph 

/ ( h̄ ξ 2 
β
) , where τ ph is the electron-phonon in- 

elastic scattering time. 

The evolutions of the variables reviewed above all have the 

same structure: during a period of time τ that is short in com- 

parison with the relaxation time, the variable x changes by 
x = 

−�({ x } )(∂ G/∂ x ) τ, where x could stand for Re ψ j , Im ψ j , ˜ A j , | ψ j | or 

χ j , and { x } could stand for several of these variables. This is true 

provided that fluctuations are ignored. When thermal fluctuations 

are taken into account, we have instead 


x = −�({ x } ) ∂G 

∂x 
τ + η , (7) 

where η is a random variable with appropriate distribution, called 

the ‘Langevin term.’ It can be shown that η has Gaussian distribu- 

tion, with mean value and variance 

〈 η〉 = k B T �
∂ log (J�) 

∂x 
τ , 〈 η2 〉 = 2 k B T �τ , (8) 

where T is the local temperature, T j , and J is the Jacobian of the 

variables in use. For instance, if we use the variables | ψ j | and χ j , 

then J = ∂( Re ψ j , Im ψ j ) /∂(| ψ j | , χ j ) = | ψ j | . An intuitive derivation 

of the distribution of η is provided in [14] . 

Fig. 1. (Reused from [18] ) Superconducting ring that encloses a magnetic flux �. 

I is the total current around the ring and I N is the normal current. One extreme 

of the ring is at high temperature T max and the other at low temperature T min . θ

measures the angle of any given position from a point at average temperature, at 

the right. 

3. Flux-induced Nernst effect in rings 

In the case of 1D samples there is no room for the usual Nernst 

effect, but we predict a qualitatively new effect for samples with 

ring topology: a thermoelectric voltage that is induced by the en- 

closed magnetic flux rather than by the magnetic field. We find 

that this voltage is largest in the direction perpendicular to the 

temperature gradient and is present when the magnetic flux is 

neither an integer nor a half-integer multiple of the quantum of 

flux �0 . Another thermoelectric phenomenon in rings is the ap- 

pearance of magnetic flux in bimetallic loops [15,16] . 

We consider a superconducting ring with an average temper- 

ature close to T c , that encloses a magnetic flux �, as shown in 

Fig. 1 . For flux in the range 0 < � < 0.5 �0 , a diamagnetic current 

I flows around the ring [17] . In the region where the temperature is 

higher than the average, superconductivity is weaker than the av- 

erage and therefore the super current will be smaller than the av- 

erage; as a consequence, a normal current I N will have to reinforce 

the supercurrent in order to reach the total current I . On the other 

hand, in the region of lower temperature, super current should be 

large and the normal current should oppose it. We therefore pre- 

dict that, to maintain this normal current, a potential difference is 

required, higher in the region close to θ ≈ 0 in Fig. 1 , and lower 

in the region close to θ ≈ π . 

In order to check this prediction, we have evaluated the electro- 

chemical potential, as a function of position, of the enclosed flux, 

and of ring parameters, as described in Section 2 . This was done in 

[18] and here we summarize the results. We assumed for simplic- 

ity that the temperature is a linear function of position along the 

plane of the sample, so that as a function of the angle θ in Fig. 1 , 

T (θ ) = 

1 

2 

[ T min (1 + sin θ ) + T max (1 − sin θ ) ] , (9) 
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