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a b s t r a c t 

Within the density-matrix formalism based on the Bogoliubov-de Gennes equations approach we inves- 

tigate the dynamics of the non-equilibrium BCS pairing induced by a sudden change of the coupling 

constant in quasi-1D and quasi-0D samples. We demonstrate that two different dynamical regimes of 

the amplitude of the BCS gap can be distinguished: an initially damped oscillation in the case of short 

quantum wires and purely irregular dynamics in the case of nanorods. 

© 2016 Published by Elsevier B.V. 

Spontaneous gauge symmetry breaking, i.e., the phenomenon in 

a physical system, where the symmetry of the vacuum is lower 

than the symmetry of the system Hamiltonian, results in two 

typical fundamental collective excitations: gapped amplitude/Higgs 

modes and gapless phase/Goldstone modes. The amplitude mode 

of the order parameter does not couple directly to any external 

probe (in the case of a clean system). It can only be excited by 

other excitations which shake the ground state [1,2] . If such other 

excitations are coupled to external probes, the amplitude mode ap- 

pears by stealing weight from them (for an example in supercon- 

ductivity see Ref. [3] ). This was the reason why until recently the 

amplitude mode was not detected experimentally in superconduct- 

ing and superfluid systems. This mode was recently identified in a 

2D bosonic neutral superfluid close to a quantum phase transition 

to a Mott insulating phase. [4] There is a more crude way of shak- 

ing the condensate to observe the Higgs mode in superconductors. 

This is a pump probe experiment, in which a THz pulse is applied 

below the SC gap. The creation of a large number of excitations 

shake the condensate. [5–7] Only recently experimentalists have 
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demonstrated the oscillatory dynamics of the BCS pairing induced 

by an intense monocycle-like THz pulse in a superconducting NbN 

film. [8] 

Ultracold Fermi gases offer alternative possibilities to shake the 

condensate by almost instantaneously modifying the BCS pairing 

interaction. [9] This can be achieved by tuning an external mag- 

netic field in the vicinity of a Feshbach resonance in particle scat- 

tering. Such an excitation allows for an investigation of the coher- 

ent pairing dynamics far away from equilibrium, which develops 

on a short time scale after an initial sudden perturbation shorter 

than any characteristic time scales in the system. [10–15] Such fast 

experiments can open up a possibility to induce “phase transitions”

[16] and dynamics of order parameters in correlated materials, al- 

lowing the coherent fast manipulation of correlated systems. Fur- 

thermore, ultra-cold atomic gases offer a unique opportunity to ex- 

plore the influence of confinement / dimensionality on the pair- 

ing correlations, [17,18,19,20] because dimensionality and confine- 

ment can be precisely controlled by tuning external parameters 

[17,21–23] . Restricting the dimensionality of Fermi gases may pave 

the way toward experimental evidences of unconventional phases, 

like the FFLO state, [24–26] etc. 
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Unconventional characteristics have triggered the general inter- 

est in studies of superconducting and superfluid systems with re- 

duced dimensionality. Fascinating in its own right, the field of su- 

perfluidity / superconductivity with quasi-low dimensional nature 

combined with the field of non-equilibrium physics may help to 

achieve control and manipulation over the pairing correlations in 

such systems. It is the purpose of this paper to explore the influ- 

ence of the confinement strength on the pairing dynamics after an 

ultra-short perturbation t perturb � τ� � τ ε . Here the quasiparti- 

cle energy relaxation time at temperature T is, τ ε ∼ � E F /max ( �2 , 

T 2 ) with E F being the Fermi energy and τ� ∼ � /| �| is a typical 

dynamical time scale of the superconducting order parameter. Un- 

der such excitation conditions the quasiparticle spectrum looses 

its physical meaning and the system evolves non-adiabatically. The 

evolution of the system is collisionless in the time interval t < τ ε . 

Within the density-matrix formalism based on the Bogoliubov–de 

Gennes equations we investigate two different dynamical regimes 

of the amplitude of the BCS gap. (cf. [6,7] ) Here we consider metal- 

lic superconductors. We model the system confinement by a three- 

dimensional infinite box potential with the width (length) given by 

L x and L y ( L z ). We use the parameters typical for Sn: g i N(0) = 0 . 25 

( g is the electron-electron interaction strength and N (0) is the bulk 

energy density of states for one spin projection at the Fermi sur- 

face) and T D = 

h̄ ω D 
k B 

= 195 K (Debye temperature) corresponding to 

the Debye energy h̄ ω D = 16 . 8 meV. 1 

To start with we consider the Hartree-Fock-Bogoliubov Hamil- 

tonian 

H HFB = 

∫ 
d r 

∑ 

α

ψ 

† 
α( r ) H e ψ α( r ) 

+ �( r , t ) ψ 

† 

↑ ( r ) ψ 

† 

↓ ( r ) + �∗( r , t ) ψ ↓ ( r ) ψ ↑ ( r ) 

with the order parameter �( r , t ) = g 
〈
ψ ↑ ( r ) ψ ↓ ( r ) 

〉
. Here ψ α( r ) and 

ψ 

† 
α( r ) are the field operators for an electron with spin α. H e is 

the single-particle electron Hamiltonian, which takes into account 

confinement. A point-like form of the electron-electron interaction 

characterized by the coefficient g is assumed, and an appropriate 

momentum cut-off confining the interaction to a narrow layer, the 

Debye window, near the Fermi surface is implied. Making use of 

the canonical Bogoliubov transformation, which expresses the elec- 

tron field operators in terms of new Fermi operators γ p ↑↓ , γ † 

p↑↓ 
as 

ψ ↑ ( r , t ) = 

∑ 

p 

γp↑ ( t ) u p ( r ) − γ † 

p↓ ( t ) v 
∗
p ( r ) (1) 

ψ ↓ ( r , t ) = 

∑ 

p 

γp↓ ( t ) u p ( r ) + γ † 

p↑ ( t ) v 
∗
p ( r ) , (2) 

the amplitudes u p ( r ), v p ( r ) satisfy the Bogoliubov-de Gennes equa- 

tions at the initial time (
H e �(0) ( r ) 

�(0) ∗( r ) −H 

∗
e 

)(
u p ( r ) 
v p ( r ) 

)
= E p 

(
u p ( r ) 
v p ( r ) 

)
. (3) 

Therefore, the Hamiltonian can be reduced to the diagonal form 

H HFB = E g + 

∑ 

p,σ

E p γ
† 
p,σ γp,σ , (4) 

as long as the current value of �( � r ) is equal to its initial value 

�(0) ( � r ) . Here the constant E g is the ground state energy of the su- 

perconductor and E p can be understood as the excitation energy. 

As in [6,7] we adopt the Anderson approximate solution for the 

BdG equations, i.e., we assume that 

u p ( r ) = u p ϕ p ( r ) and v p ( r ) = v p ϕ p ( r ) , (5) 

1 For the systems investigated in this work E F ≈ 10.7 eV and � ∼ 0.5 meV, i.e., 

τ� ∼ 1.3 ps and t ε ∼ 14 ns. 

where ϕ p ( r ) are the single-electron wave functions in the confine- 

ment potential with energy ξ p (relative to the Fermi energy). In 

this approximation the equilibrium state of the superconductor is 

characterized by the relations 

u 

2 
p − v 2 p = ξp /E p and 2 u p v p = �(0) 

p,p 

/
E p , (6) 

where E p = 

√ 

ξ2 
p +�(0)2 

p,p and the matrix �(0) 
p,q = 

∫ 
d 

�
 r ϕ 

∗
p (r )�(0) (r ) ϕ q (r ) . 

Due to the external perturbation the Hamiltonian acquires the fol- 

lowing form 

H HFB = 

∑ 

p,σ

R p γ
† 
p,σ γp,σ + 

∑ 

p 

[ 
C p γ

† 

p↑ γ
† 

p ↓ + C ∗p γp ↓ γp↑ 
] 
. (7) 

p indicates a time-reversed state, i.e., 〈 � r | p 〉 = 〈 p| � r 〉 . The functions 

R p and C p depend on the initial and the current values of the order 

parameter as 

R p = 

ξ 2 
p + �(0) 

p,p Re [ �p,p ( t ) ] 

E p 
, (8) 

C p = 

ξp 

E p 

{
Re [ �p,p ( t ) ] − �(0) 

p,p 

}
+ i Im [ �p,p ( t ) ] . (9) 

The order parameter is given in the Bogoliubov basis Eqs. (1) and 

(2) ] by 

�p,p = g 
∑ 

q,k q 

V q,p 

{ 

v ∗2 
q 

〈 
γ † 

q ↓ γ
† 

q ↑ 
〉 
− u 

2 
q 

〈 
γ

q ↑ γq ↓ 
〉 

− u q v ∗q 
[ 〈 

γ † 

q ↑ γq ↑ 
〉 
+ 

〈 
γ † 

q ↓ γq ↓ 
〉 ] 

+ u q v ∗q 
} 

, (10) 

with the interaction matrix element 

V q,p = 

∫ 
d r | ϕ q ( r ) | 2 | ϕ p ( r ) | 2 . (11) 

Therefore, the pairing dynamics of a superconductor as manifested 

in the time evolution of the order parameter �( r , t ) is governed by 

the time evolution of the four expectation values 〈 γ
p↑ (t) γq ↓ (t) 〉 , 

〈 γ † 

q ↑ (t) γp↑ (t) 〉 , 〈 γ † 

p↓ (t) γq ↓ (t) 〉 and 〈 γ † 

p↓ (t) γ † 

q ↑ (t) 〉 . We set up and 

numerically solve the Heisenberg equations of motion for these dy- 

namical variables. In doing so, we assume that before the non- 

adiabatic perturbation the superconducting system has been in 

the ground state, which is the quasiparticle vacuum. This means 

that all four correlators are zero and �p,p = �(0) 
p,p . However, due 

to the interaction quench finite correlators are excited and thus 

�p,p 
 = �(0) 
p,p . 

In this paper we analyze the amplitude dynamics of the spa- 

tially averaged BCS gap 

�̄(t) = 

∫ 
V 

d 3 r�(r , t) 

of a BCS superconductor of volume V = L x L y L z after an interaction 

quench from g i N(0) = 0 . 25 to g f N(0) = 0 . 24 which models an ul- 

trafast laser excitation [7] . We start with the dynamics of short 

quantum wires. Then, we investigate the transition from an ini- 

tially damped amplitude oscillation of the gap known from quan- 

tum wires [7] to purely irregular dynamics in the case of nanorods. 

We will explain this transition on the basis of a set of linearized 

equations of motion and by that, we will link the characteristics of 

the two regimes to the distribution of the quasi-particle energies 

E p . To do so, we focus on a system with the width L x = L y = 4 . 3 nm, 

which is narrow enough to exhibit strong quantization effects but 

is still in the regime accessible for experiment. 

Fig. 1 shows the amplitude dynamics of the BCS gap for such a 

system with the length given by L z = 300 nm (upper, blue curve), 

i.e., a short quantum wire. One clearly observes an initially damped 

oscillation of the gap with one main frequency which is the main 

dynamical characteristic of a quantum wire (cf. [7] ). However, after 
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