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Within the density-matrix formalism based on the Bogoliubov-de Gennes equations approach we inves-
tigate the dynamics of the non-equilibrium BCS pairing induced by a sudden change of the coupling
constant in quasi-1D and quasi-OD samples. We demonstrate that two different dynamical regimes of
the amplitude of the BCS gap can be distinguished: an initially damped oscillation in the case of short
quantum wires and purely irregular dynamics in the case of nanorods.
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Spontaneous gauge symmetry breaking, i.e., the phenomenon in
a physical system, where the symmetry of the vacuum is lower
than the symmetry of the system Hamiltonian, results in two
typical fundamental collective excitations: gapped amplitude/Higgs
modes and gapless phase/Goldstone modes. The amplitude mode
of the order parameter does not couple directly to any external
probe (in the case of a clean system). It can only be excited by
other excitations which shake the ground state [1,2]. If such other
excitations are coupled to external probes, the amplitude mode ap-
pears by stealing weight from them (for an example in supercon-
ductivity see Ref. [3]). This was the reason why until recently the
amplitude mode was not detected experimentally in superconduct-
ing and superfluid systems. This mode was recently identified in a
2D bosonic neutral superfluid close to a quantum phase transition
to a Mott insulating phase. [4] There is a more crude way of shak-
ing the condensate to observe the Higgs mode in superconductors.
This is a pump probe experiment, in which a THz pulse is applied
below the SC gap. The creation of a large number of excitations
shake the condensate. [5-7] Only recently experimentalists have
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demonstrated the oscillatory dynamics of the BCS pairing induced
by an intense monocycle-like THz pulse in a superconducting NbN
film. [8]

Ultracold Fermi gases offer alternative possibilities to shake the
condensate by almost instantaneously modifying the BCS pairing
interaction. [9] This can be achieved by tuning an external mag-
netic field in the vicinity of a Feshbach resonance in particle scat-
tering. Such an excitation allows for an investigation of the coher-
ent pairing dynamics far away from equilibrium, which develops
on a short time scale after an initial sudden perturbation shorter
than any characteristic time scales in the system. [10-15] Such fast
experiments can open up a possibility to induce “phase transitions”
[16] and dynamics of order parameters in correlated materials, al-
lowing the coherent fast manipulation of correlated systems. Fur-
thermore, ultra-cold atomic gases offer a unique opportunity to ex-
plore the influence of confinement / dimensionality on the pair-
ing correlations, [17,18,19,20] because dimensionality and confine-
ment can be precisely controlled by tuning external parameters
[17,21-23]. Restricting the dimensionality of Fermi gases may pave
the way toward experimental evidences of unconventional phases,
like the FFLO state, [24-26] etc.
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Unconventional characteristics have triggered the general inter-
est in studies of superconducting and superfluid systems with re-
duced dimensionality. Fascinating in its own right, the field of su-
perfluidity | superconductivity with quasi-low dimensional nature
combined with the field of non-equilibrium physics may help to
achieve control and manipulation over the pairing correlations in
such systems. It is the purpose of this paper to explore the influ-
ence of the confinement strength on the pairing dynamics after an
ultra-short perturbation therry, < Ta < Te. Here the quasiparti-
cle energy relaxation time at temperature T is, T¢ ~ hEg/max (A2,
T2) with Ep being the Fermi energy and 7, ~ HJ|A| is a typical
dynamical time scale of the superconducting order parameter. Un-
der such excitation conditions the quasiparticle spectrum looses
its physical meaning and the system evolves non-adiabatically. The
evolution of the system is collisionless in the time interval t < Te.
Within the density-matrix formalism based on the Bogoliubov-de
Gennes equations we investigate two different dynamical regimes
of the amplitude of the BCS gap. (cf. [6,7]) Here we consider metal-
lic superconductors. We model the system confinement by a three-
dimensional infinite box potential with the width (length) given by
Ly and Ly (L;). We use the parameters typical for Sn: g;N(0) = 0.25
(g is the electron-electron interaction strength and N(O) is the bulk
energy density of states for one spin projection at the Fermi sur-

@wp

face) and Tp = ﬁk—B = 195K (Debye temperature) corresponding to

the Debye energy hwp = 16.8 meV.!
To start with we consider the Hartree-Fock-Bogoliubov Hamil-
tonian

Hups = /dl' > Ul (1) Hea (1)

+ A OYTOY] () + A (X OY, ()P4 (1)
with the order parameter A(r, t) = g(y4 (1), (r)). Here /4 (r) and

Ilf; (r) are the field operators for an electron with spin «. He is
the single-particle electron Hamiltonian, which takes into account
confinement. A point-like form of the electron-electron interaction
characterized by the coefficient g is assumed, and an appropriate
momentum cut-off confining the interaction to a narrow layer, the
Debye window, near the Fermi surface is implied. Making use of
the canonical Bogoliubov transformation, which expresses the elec-

tron field operators in terms of new Fermi operators Vot VJT '

as

Y (.0 =Y ypr (Oup(r) — ) OV} (r) )]
P

YL 0) =3 ¥y (Oup() + ¥, OV (D), 2)
P

the amplitudes up(r), vp(r) satisfy the Bogoliubov-de Gennes equa-
tions at the initial time

He — AO®) () _p (up(r) 3
AO(ry  -H; vp(r) ) P\ vp(n) )
Therefore, the Hamiltonian can be reduced to the diagonal form
Hurg = Eg + Z Epy;g Vp.os (4)
p.o

as long as the current value of A(F) is equal to its initial value
A©® (7). Here the constant Eg is the ground state energy of the su-
perconductor and E, can be understood as the excitation energy.

As in [6,7] we adopt the Anderson approximate solution for the
BdG equations, i.e., we assume that

Up(r) = Upwp(r) and vp(r) = vp@p(T), (5)

1 For the systems investigated in this work Er ~ 10.7eV and A ~ 0.5 meV, i.e.,
Ta ~ 13 psand tc ~ 14 ns.

where @p(r) are the single-electron wave functions in the confine-
ment potential with energy &, (relative to the Fermi energy). In
this approximation the equilibrium state of the superconductor is
characterized by the relations

ul —v2=£y/E, and 2upv, = AY)/E,. (6)

where Ep =, /62+A%)? and the matrix Al(,% = [ dig; (1) A (r)gq (r).
Due to the external perturbation the Hamiltonian acquires the fol-
lowing form

Hur = ZRPVJ,(T Voo ) I:CPVJT Vgl +Grhy VPT]' (7)
p.o 3

P indicates a time-reversed state, i.e., (F|p) = (p|7). The functions
R, and G, depend on the initial and the current values of the order
parameter as

B &+ Ag.)z)aRe[Ap.p(t)]

Ry, E,

(8)

G = %{Re[AP.p(t)] = App} +ilm[App(©)] ©)

The order parameter is given in the Bogoliubov basis Eqs. (1) and
(2)] by

App=8) qup{”f(yal VqT¢> - “3<Vq¢ 7’m>
q.kq

— Uglg [(VJ¢VQT>+ <V§¢Vm>] +”ql’2}’ (10)
with the interaction matrix element
Vo = [ drlgg®)P gy (1)

Therefore, the pairing dynamics of a superconductor as manifested
in the time evolution of the order parameter A(r, t) is governed by
the time evolution of the four expectation values ()/pT (©)yqy (),

(Vi Oy O), (] Oy, ©) and (y] O], ©). We set up and
numerically solve the Heisenberg equations of motion for these dy-
namical variables. In doing so, we assume that before the non-
adiabatic perturbation the superconducting system has been in
the ground state, which is the quasiparticle vacuum. This means
that all four correlators are zero and A, )= Ag,);)r However, due
to the interaction quench finite correlators are excited and thus
App# A0

p.p p.p*

In this paper we analyze the amplitude dynamics of the spa-
tially averaged BCS gap

At) = /Vd3rA(r,t)

of a BCS superconductor of volume V = L,L,L, after an interaction
quench from gN(0) = 0.25 to g;N(0) = 0.24 which models an ul-
trafast laser excitation [7]. We start with the dynamics of short
quantum wires. Then, we investigate the transition from an ini-
tially damped amplitude oscillation of the gap known from quan-
tum wires [7] to purely irregular dynamics in the case of nanorods.
We will explain this transition on the basis of a set of linearized
equations of motion and by that, we will link the characteristics of
the two regimes to the distribution of the quasi-particle energies
Ep. To do so, we focus on a system with the width Ly =L, = 4.3 nm,
which is narrow enough to exhibit strong quantization effects but
is still in the regime accessible for experiment.

Fig. 1 shows the amplitude dynamics of the BCS gap for such a
system with the length given by L, = 300 nm (upper, blue curve),
i.e., a short quantum wire. One clearly observes an initially damped
oscillation of the gap with one main frequency which is the main
dynamical characteristic of a quantum wire (cf. [7]). However, after

Please cite this article as: P. Kettmann et al., Spectral characteristics of the coherent dynamics of the order parameter in superconducting
nanorods, Physica C: Superconductivity and its applications (2016), http://dx.doi.org/10.1016/j.physc.2016.06.005



http://dx.doi.org/10.1016/j.physc.2016.06.005

Download English Version:

https://daneshyari.com/en/article/5492383

Download Persian Version:

https://daneshyari.com/article/5492383

Daneshyari.com


https://daneshyari.com/en/article/5492383
https://daneshyari.com/article/5492383
https://daneshyari.com/

