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a b s t r a c t 

Vortex states in a chiral helimagnet/superconductor bilayer are investigated numerically, using the 

Ginzburg–Landau equations with the finite element method. In this bilayer, effect of the chiral helimag- 

net on the superconductor is taken as an external field. Magnetic field distribution can be controlled by 

an applied field to the bilayer. It is shown that a single vortex in a gradient field is elongated along the 

field gradient. In zero applied field, there are up- and down vortices which are parallel or antiparallel 

to the z -axis, respectively. But increasing the applied field, down-vortices disappear and up-vortices form 

undulated triangular lattices. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Interplay between magnets and superconductors were studied 

for decades [1] . For example, superconductors with homogenous 

ferromagnet [2] and artificial magnetic dots [3–5] were studied. It 

was pointed out that in a ferromagnet/superconductor bilayer sys- 

tem, a vortex state appears with magnetic domain wall [1] . Such 

domain wall structure was studied theoretically and experimen- 

tally [6–8] . 

In contrast to previous studies, we study a chiral helimag- 

net/superconductor bilayer system ( Fig. 1 ). In the chiral helimag- 

net, magnetic moments show helical rotation [9] . Such magnetic 

structure in Cr 1/3 NbS 2 was observed by Togawa et al. using Lorenz 

microscopy [10] . They also observed chiral magnetic soliton lattices 

under an external field, of which period agrees with theory [9] . 

In the ferromagnet/superconductor bilayer with domain struc- 

tures, the magnetic field from the ferromagnet is H or −H. But 

magnetic field from the chiral helimagnet changes continuously. 

Therefore, vortex states are expected to be different from those 

in ferromagnet/superconductor bilayers. In this study, we focus on 

such effects of continuously changing magnetic field onto the vor- 

tex states in the superconductor. In order to obtain vortex states in 

the chiral helimagnet/superconductor bilayer, we use phenomeno- 

logical Ginzburg-Landau equations. 
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In Section 2 , we show our models and numerical method. In 

Section 3 , numerical results about the vortex states in gradient 

field are given. In Section 4 , we show stable vortex states in chiral 

helimagnet/superconductor bilayer. Section 5 is devoted to conclu- 

sions. 

2. Models and method 

We consider a two dimensional superconducting system. We 

take into account of the effect of chiral helimagnet onto the super- 

conductor as an external field, which oscillates spatially. Generally, 

a superconductor in a varying external field can be treated by the 

Ginzburg–Landau (GL) equations. 

We start from the GL free-energy, 
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Here ψ is the superconducting order parameter, A is a magnetic 

vector potential and h = ∇ × A . Spatially varying external magnetic 

field is H ( r ) and α = a ( T / T c − 1 ) and β are constants for the GL 

theory. The term 

1 
8 π ( div A ) 2 is added to insure the London Gauge 

div A = 0 . In order to minimize this free-energy with respect to ψ 

and A , we use the finite element method (FEM) [11] . In the FEM, 
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Fig. 1. Schematic diagram of a superconductor/chiral helimagnet double layer sys- 

tem. 

we use the Galarkin method, in which we use the Frechét deriva- 

tive. The Frechét derivatives of the free-energy about ˜ ψ and 

˜ A be- 

comes ∫ 
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where ξ , κ and λ are the coherence length, the GL parameter and 

the penetration depth, respectively. 	0 = hc/ 2 e is the flux quanta. 

In the FEM, the system is divided into finite elements, and in 2- 

dimensional system, we use triangular elements. ( Fig. 1 ) All physi- 

cal quantities are expanded by the aria coordinates. There are three 

area coordinates for e -th element 

N i ( x, y ) = 

1 

2 S e 
( a i + b i x + c i y ) ( i = 1 , 2 , 3 ) (4) 

where coefficients are given as, 

a i = x j − x k (5) 

b i = y j − y k (6) 

c i = x j − x k (7) 

Here, ( i, j, k ) is a cyclic permutation of (1, 2, 3) and ( x i , y i , z i ) 

is the coordinate of i -th node of the e -th element. Using the area 

coordinates, the order parameter and the vector potential are ex- 

panded as, 

ψ ( x, y ) = N 1 ( x, y ) ψ 1 + N 2 ( x, y ) ψ 2 + N 3 ( x, y ) ψ 3 (8) 

A ( x, y ) = N 1 ( x, y ) A 1 + N 21 ( x, y ) A 2 + N 3 ( x, y ) A 3 (9) 

inside of e th element. Here ψ i and A i are values of the order pa- 

rameter and the vector potential at i th node. We substitute these 

expansions into Eqs. (2) and ( 3 ), and set the test function as 

˜ ψ = N i ( x, y ) ( i = 1 , 2 , 3 ) (10) 

˜ A = N i ( x, y ) e j ( i = 1 , 2 , 3 ; j = x, y ) (11) 

Then we get the GL equations in the FEM as, ∑ 

j 
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Fig. 2. The modulus k of the Jacobi’s elliptic function in Eq. (18) as a function of 

the reduced applied field β = 2 μB H appl / J S. 
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Fig. 3. The period of the chiral helimagnet as a function of a function of the re- 

duced applied field β = 2 μB H appl / J S. 
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Here definitions of the coefficients are given in Appendix . 

For a given spatially varying field H ( r ), we solve Eqs. (12) –(15) 

numerically and obtain a stable vortex state. 

For the helimagnet/superconductor bilayer, we assume the ex- 

ternal field onto the superconductor is proportional to the mag- 

netization of z -component of the magnetization of the chiral heli- 

magnet. The magnetization of chiral helimagnet can be derived as 

follows. ( [9] ) 

The Hamiltonian for spin in the chiral helimagnet is given as, 

H = −J 
∑ 

i 

S i · S i +1 + D ·
∑ 

S i × S i +1 − 2 μB H appl 

∑ 

i 

S iz (16) 

Here the first term is ferromagnetic exchange interaction, 

where J ( > 0) is the exchange energy. The second term is the 
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