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a b s t r a c t 

An origin of high-temperature superconductivity for cuprate superconductors is investigated on the ba- 

sis of the two-dimensional Hubbard model. The Coulomb interaction is a candidate that can bring about 

high-temperature superconductivity because its characteristic energy is of the order of eV. It is not triv- 

ial whether the on-site Coulomb interaction U leads to a pairing interaction between two electrons. We 

argue that the antiferromagnetic fluctuation and the kinetic charge fluctuation are responsible for high- 

temperature superconductivity. The kinetic charge fluctuation is induced by large U to get the kinetic 

energy gain in the strongly correlated region. We consider electron correlation beyond the Gutzwiller 

ansatz, by taking account of inter-site correlation such as doublon–holon correlation and kinetic corre- 

lation. We show that high-temperature superconductivity is possible in the strongly correlated region, 

where U is greater than the bandwidth, by using the variational Monte Carlo method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

High-temperature superconductors have been studied inten- 

sively since the discovery of high-temperature cuprates [1] . The 

electron correlation between electrons is important because par- 

ent compounds without carriers are insulators. It is primarily im- 

portant to clarify electronic states in the CuO 2 plane contained in 

cuprate high-temperature superconductors. The mechanism of su- 

perconductivity has been investigated, but it remains unresolved. 

It is obvious that interaction with large energy scale is necessary 

and responsible for realization of high-temperature superconduc- 

tivity. The Coulomb interaction has obviously a large characteristic 

energy scale and is a candidate of interaction that induces high- 

temperature superconductivity. 

The CuO 2 plane consists of oxygen atoms and copper atoms. 

The electronic model for this plane is the d-p model (or three-band 

Hubbard model) [1–14] . The single-band Hubbard model [15–17] is 

obtained by neglecting oxygen atoms in the CuO 2 plane. It is an 

open question whether the on-site Coulomb repulsion indeed in- 

duces superconductivity in correlated electron systems. It remains 

controversial for the two-dimensional Hubbard model [18–23] . The 

studies for the ladder Hubbard model have indicated positive re- 

sults on superconductivity [24–29] . These results suggest the exis- 

tence of pairing interaction influenced by the on-site Coulomb re- 

pulsive interaction. 
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A system described by the Hubbard model is a typical strongly- 

correlated system. The two-dimensional (2D) Hubbard model has 

been investigated intensively for several decades [15,30–35] . The 

Hubbard model was first introduced to describe a metal–insulator 

transition [15] . Since the discovery of cuprate high-temperature su- 

perconductors, many researchers tried to explain the occurrence of 

superconductivity in cuprates in terms of the 2D Hubbard model. 

The results of quantum Monte Carlo methods, which are believed 

to be exact unbiased methods, do not support the existence of 

high-temperature superconductivity in this model [18–20] . In our 

opinion this is because the Coulomb interaction U is not large in 

quantum Monte Carlo calculations where the accessible U is very 

restricted because of its nature of method. Based on the varia- 

tional Monte Carlo method, the finite superconducting gap with d - 

wave symmetry is obtained for 6 ≤ U / t in the 2D Hubbard model 

[36–41] . 

It is necessary to improve the wave function in the variational 

Monte Carlo method since the Gutzwiller function only accounts 

for the on-site correlation. The Gutzwiller function is a starting 

function that should be improved to take account of correlation 

effects. We discuss several methods to improve the wave function, 

and show that an exp (−λK) -type function [42] can be a best func- 

tion with the lowest variational energy. The variational energy is 

lowered greatly and can be close to the exact value. 

We discuss the properties of antiferromagnetism and super- 

conductivity in strongly-correlated region by using improved wave 

functions. It may be believed that the antiferromagnetic correlation 

is enhanced as U is increased and this will hold for large U where 

U is greater than the bandwidth. This is, however, not correct when 
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holes are doped as will be shown on the basis of improved wave 

functions. The antiferromagnetic correlation is suppressed when U 

is extremely large being larger than the bandwidth. A supercon- 

ducting correlation is developed in this region as the antiferromag- 

netic correlation is suppressed with the increase of U . The develop- 

ment of superconducting correlation is understood as induced by 

spin fluctuation which is inspired by the kinetic charge fluctuation 

to conquer antiferromagnetism. This spin fluctuation in strongly 

correlated region must be distinguished from that in weakly corre- 

lated region. The latter is the conventional spin fluctuation that has 

been discussed extensively in literatures [43,44] . We expect some 

relation between these two spin fluctuations. 

In next section we discuss an improvement of wave function in 

correlated electron systems. In Section 3 we examine the stabil- 

ity of antiferromagnetic state and pairing state, based on our wave 

functions. We give a summary in the last section. 

2. Hamiltonian and wave functions 

The single-band Hubbard model is given by 

H = 

∑ 

i jσ

t i j c 
† 
iσ

c jσ + U 

∑ 

i 

n i ↑ n i ↓ , (1) 

where t ij are transfer integrals and U is the on-site Coulomb 

energy. The transfer integral t ij is non-zero t i j = −t for nearest- 

neighbor pair 〈 ij 〉 and t i j = −t ′ for next-nearest neighbor 〈〈 ij 〉〉 . 
Otherwise t ij vanishes. We denote the number of sites as N and 

the number of electrons as N e . The energy unit is given by t . 

The wave function should include correlation between elec- 

trons. The well-known Gutzwiller wave function is given by ψ G = 

P G ψ 0 where P G is the Gutzwiller operator defined by 

P G = 

∏ 

j 

(
1 − (1 − g) n j↑ n j↓ 

)
(2) 

with the variational parameter g in the range of 0 ≤ g ≤ 1. P G con- 

trols the double occupancy to take account of electron correlation. 

ψ 0 is a trial one-particle state that is taken to be the Fermi sea 

ψ FS , the antiferromagnetic state (spin-density wave state) ψ AF or 

the BCS state ψ BCS . When ψ 0 = ψ BCS , we multiply P N e which is a 

projection operator that extracts only the state with a fixed total 

electron number N e . 

It is necessary to improve the Gutzwiller wave function be- 

cause only the on-site correlation is considered in the Gutzwiller 

ansatz. The one way to improve the wave function is to take ac- 

count of nearest-neighbor doublon–holon correlation [45–48] . The 

wave function with doublon–holon correlation is given by ψ d−h = 

P d−h P G ψ 0 with 

P d−h = 

∏ 

j 

(
1 − (1 − η) 

∏ 

τ

[ d j (1 − e j+ τ ) + e j (1 − d j+ τ )] 

)
. (3) 

Here, d j is the operator for the doubly-occupied site given by 

d j = n j↑ d j↓ , and e j is the empty site operator given as e j = (1 −
n j↑ )(1 − n j↓ ) . η is a variational parameter in the range of 0 ≤ η
≤ 1. We put η = 1 in the non-interacting case. A Jastrow factor is 

defined as 

P J = exp 

( 

−1 

2 

∑ 

i 	 = j 
h i j n i n j 

) 

, (4) 

where n i = n i ↑ + n i ↓ and { h ij } are variational parameters. We can 

take into account inter-site correlations by multiplying P J such as 

P J P d−h P G ψ 0 . 

In the other way, we can take account of inter-site correlation 

by multiplying the kinetic operator to the Gutzwiller function to 

Table 1 

Variational energies for 4 × 4 lattice, N e = 16 , U/t = 5 and 

t ′ /t = 0 . The boundary conditions are periodic in one direc- 

tion and antiperiodic in the other direction. The nearest- 

neighbor (n.n.) Jastrow function in the third row means 

that we considered only the nearest-neighbor Jastrow cor- 

relation factor exp (− ∑ 

〈 i j〉 h i j n i n j ) . The result in the fourth 

row is from Ref. [50] . The exact result was obtained by us- 

ing the exact diagonalization method. 

Wave function Energy Comments 

P G ψ FS −11 .654 

P d−h P G ψ FS −11 .856 g = 0 . 46 , η = 0 . 89 

P J P d−h P G ψ FS −11 .863 n.n. Jastrow function 

P J P d−h P G L S=0 P pair −12 .459 Ref. [50] 

e −λK P G ψ FS −12 .366 g = 0 . 15 , λ = 0 . 115 

P G (g ′ ) e −λK P G (g) ψ FS −12 .479 g = 0 . 035 , g ′ = 0 . 60 

e −λK P G e 
−μK P G ψ FS −12 .487 

Exact −12 .530 

improve the wave function. A typical wave function of this type is 

written as [42,49] 

ψ λ ≡ ψ 

(2) = e −λK P G ψ 0 , (5) 

where K is the kinetic term in the Hamiltonian: K = 

∑ 

i jσ t i j c 
† 
iσ

c jσ
and λ is a variational parameter to be optimized to lower the en- 

ergy. This wave function is further improved by multiplying the 

Gutzwiller operator again: 

ψ 

(3) ≡ P G ψ λ = P G e 
−λK P G ψ 0 . (6) 

The expectation values for these wave functions are evaluated by 

using the variational Monte Carlo method. 

We calculate the ground state energy to check the validity 

of our wave functions. Recently, a variational wave function was 

proposed by introducing large number of variational parameters 

in the Gutzwiller–Jastrow factor and the one-particle function 

[50,51] . The energy evaluated by a wave function with many varia- 

tional parameters is lowered considerably compared to that by the 

Gutzwiller function ψ G . The wave function ψ λ gives a good es- 

timate of the energy, and P G ψ λ and e −γ K P G ψ λ give best ground- 

state energy. We show variational energy calculated on 4 × 4 lat- 

tice in Table 1 . The many-parameter wave function in [50] is a nice 

wave function with much lowered variational energy. The varia- 

tional energy by our wave functions are also lowered greatly com- 

pared to the Gutzwiller wave function and exhibits a best ground- 

state energy. 

It is seen that the energy is not so improved only by multi- 

plying the doublon–holon correlation factor P d−h to the Gutzwiller 

function. The trial wave function P d−h P G ψ 0 was used to develop 

the physics of Mott transition [45] following the suggestion that 

the Mott transition occurs due to doublon–holon binding [52] . 

We before examined the Mott transition with the wave function 

e −λK P G ψ 0 [53] because the variational energy by this wave func- 

tion is much lower than that of the doublon–holon wave function. 

3. Spin fluctuation induced by kinetic charge fluctuation 

Here we examine the stability of the antiferromagnetic state as 

a function of U when holes are doped in the 2D Hubbard model. 

As we mentioned in Section 1 , the antiferromagnetic correlation is 

suppressed in the strongly correlated region. We discuss this and 

its relation to superconductivity in this section. 

We show the antiferromagnetic (AF) order parameter �AF as a 

function of U in Fig. 1 . This is a typical behavior of �AF and the 

AF energy gain �E AF also shows a similar behavior. The calcula- 

tion was carried out, by employing the wave function ψ λ, on a 

10 × 10 lattice. When U is small, �AF increases with the increase 

of U and has a maximum at U m 

� 8 t − 10 t that is of the order of 

Please cite this article as: T. Yanagisawa, I. Hase, Duality in spin fluctuation in correlated electron systems, Physica C: Superconductivity 

and its applications (2016), http://dx.doi.org/10.1016/j.physc.2016.04.010 

http://dx.doi.org/10.1016/j.physc.2016.04.010


Download English Version:

https://daneshyari.com/en/article/5492447

Download Persian Version:

https://daneshyari.com/article/5492447

Daneshyari.com

https://daneshyari.com/en/article/5492447
https://daneshyari.com/article/5492447
https://daneshyari.com

