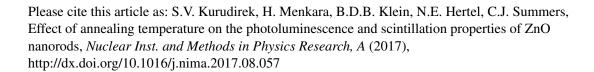
Accepted Manuscript

Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

Sinem V. Kurudirek, H. Menkara, Benjamin D.B. Klein, Nolan E. Hertel, Christopher J. Summers


PII: S0168-9002(17)30939-7

DOI: http://dx.doi.org/10.1016/j.nima.2017.08.057

Reference: NIMA 60076

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date: 13 June 2017 Revised date: 18 August 2017 Accepted date: 24 August 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Effect of annealing temperature on the photoluminescence and scintillation properties of
2	ZnO nanorods
3	Sinem V. Kurudirek ^{1,2*} ,H. Menkara ² , Benjamin D. B. Klein ² , Nolan E. Hertel ² and Christopher J.
4	Summers ^{2,3}
5	¹ Ataturk University, Faculty of Science, Department of Physics, 25240 Erzurum, Turkey
6	² Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
7	³ PhosphorTech Corporation, 3645 Kennesaw North Industrial Parkway, GA 30144, USA
8	Abstract
9	The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as
10	determined by pulse height distribution of alpha particle irradiation, has been investigated for
11	solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass
12	for 22h at 95°C as a substrate using a solution based hydrothermal technique. The samples were
13	first annealed for different times (30, 60, 90 and 120 min) at 300°C and then at different
14	temperatures (100°C-600°C) in order to determine the optimum annealing time and temperature,
15	respectively. Before annealing, the ZnO nanorod arrays showed a broad yellow-orange visible
16	and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity
17	of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity
18	correspondingly increased (especially at temperatures higher than 100°C). Based on the ratio of
19	the peak intensity ratio before and after annealing, it was concluded that samples at 350 °C for 90
20	min. resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height

 $^{^{*}}$ e-mail address: vahidesinem@gmail.com

Download English Version:

https://daneshyari.com/en/article/5492506

Download Persian Version:

https://daneshyari.com/article/5492506

<u>Daneshyari.com</u>