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a b s t r a c t

X-ray phase contrast imaging is a measurement task which is challenging to optimize, because many physical
effects determine signal and noise. If we describe the detail visibility by the spatial signal to noise ratio, SNR(𝑢),
we can optimize an imaging setup by maximizing its SNR(𝑢). We propose a measurement method for the spatial
SNR which is suitable for this purpose. It consists of measuring a series of images from which the spatial SNR
is calculated. This allows a convenient and exact optimization of the SNR that does not rely on theoretical
simplifications and is not specific to X-ray imaging. We demonstrate the measurement method for the example
of choosing the optimal geometrical magnification for cone-beam inline X-ray phase contrast. Additionally, we
propose the use of a known signal reconstruction method – the Wiener Deconvolution – to improve the detail
visibility by post-processing images within the limits given by the measured SNR(𝑢). As the SNR(𝑢) gives the
degree of this improvement, we derive a measure for the effective spatial resolution from the SNR(𝑢).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The spatial SNR (also called frequency-dependent SNR) describes
the performance of an imaging setup, specifically if image details of
a certain size are visible in a noisy image. It includes image blur effects,
commonly described with a modulation transfer function (MTF), and is
thus more general than the temporal SNR (not frequency-dependent).

In the case of X-ray imaging, the formation of an image is a combined
process which includes effects which either decrease or increase the SNR
and which depend on the experimental setup. Examples for effects that
decrease SNR are image blur or polychromatic effects [1]. An effect that
increases the SNR is (inline) phase contrast [2–5]. The signal strength
can also depend strongly on the measurement conditions, e.g. X-ray
energy.

One approach for optimizing an imaging setup for high SNR is to
simulate all effects on the SNR. If used to characterize an actual experi-
mental setup, this approach requires the properties of the experimental
setup to be accurately determined and modeled correctly. An example
of a problematic model assumption is a Gaussian form for the MTF of
the source or detector, because actual MTFs can differ greatly from this
form.

In this work we approach the problem differently: we measure the
spatial SNR directly and build a feedback loop that allows us to optimize
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the measurement parameters. This of course only works for parameters
that can easily be varied in an existing experimental setup, for example
geometrical magnification or tube voltage/filters (source spectrum).
The optimum is also specific to the imaging task, for example material
composition and thickness of the sample, and the size of the details to
be resolved—although similar tasks will have similar optima.

One of the problems in optimizing the experimental parameters
of a laboratory (cone-beam) inline phase contrast imaging setup is
the determination of the optimal geometrical X-ray magnification [6].
Usually the optimal magnifications for the phase contrast and resolution
(MTF) differ, we then need to find the magnification at which the
combination of both effects leads to an optimal SNR. Because we
analyze the signal gain via the power spectrum, the gain in SNR can
theoretically be predicted from the derivations of Fourier filter phase
retrieval algorithms, for example [7].

If we measure the SNR at different sample positions, we can directly
determine the optimal position without the need to model the imaging
setup. In a setup without phase contrast, the same procedure yields the
position at which the spatial resolution is optimal.

To understand the concepts used here, basic knowledge of the
subjects of stochastic processes [8], Bayesian probability theory [9] and
Fourier signal processing [10] is useful.
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2. Measuring signal and noise

The aim of the SNR measurement method we present here is not pri-
marily to derive an absolute measure of imaging performance. Because
the absolute value of the SNR depends on how much signal/structure
is on average in the measurement region, the absolute SNR values
are specific to the imaging task and sample. What we aim to do is to
compare SNR measurements for a representative sample under different
measurement conditions. This way, we can find a optimum of the
imaging performance that is also valid for similar imaging tasks.

To make clear what we mean by SNR, we define two types of noise,
which then define corresponding types of SNR:

∙ Temporal noise: (Statistical) deviations between independent
measurements under identical conditions for one physical vari-
able (e.g. intensity in one pixel), usually at different times. It can
be reliably measured under any conditions that do not change in
time and for processes that are Markov.

∙ Spatial noise: Temporal noise at different points in space
(e.g. pixels in an area detector). This definition is both exact
and practically useful, because temporal noise can be determined
reliably.

Noise can have spatial correlations, signals almost always have – but
pixels are assumed to be independent if temporal noise is considered in
imaging.

2.1. Measuring temporal SNR

Temporal noise can be reliably measured even if a sample is present
in the imaging setup. This is done by measuring a series of 𝐾 images
𝑑𝑗 (𝑥) under identical conditions and subtracting the average 𝑠𝐾⧵𝑗 (𝑥) of
all other images from the individual images to get noise images 𝑛𝑗 (𝑥):

𝑛𝑗 (𝑥) = 𝑑𝑗 (𝑥) − 𝑠𝐾⧵𝑗 (𝑥) = 𝑑𝑗 (𝑥) −
𝐾
∑

𝑚=1,𝑚≠𝑗

𝑑𝑚(𝑥)
𝐾 − 1

. (1)

Here 𝑥 is the 𝑛-dimensional spatial coordinate. A similar approach
has been described in [11,12].

If we additionally approximate the signal as the average over all
images, we can determine the temporal SNR per pixel as:

SNRtemp(𝑥) =
Avg𝑗 (𝑑𝑗 (𝑥))2

Var𝑗 (𝑛𝑗 (𝑥))
. (2)

2.2. Measuring spatial SNR

To determine if details in a measured image can be resolved, the
frequency-dependent or spatial SNR(𝑢) must be used instead of the
temporal SNR, because the temporal SNR does not include modulation
transfer effects such as image blur (MTF) or phase contrast.

For example if we digitally apply a Fourier filter blur to an image, the
temporal SNR is increased. The spatial SNR is unchanged—there is no
information loss, because the filter is invertible. Similarly, an additional
phase contrast signal does not influence the temporal SNR but it does
increase the spatial SNR.

To define signal and noise, we use a linear additive data model with
data 𝑑(𝑥) (e.g. number of detected photons), signal 𝑠(𝑥) and noise 𝑛(𝑥)
at a point 𝑥 on the detector:

𝑑(𝑥) = 𝑠(𝑥) + 𝑛(𝑥) (3)

where 𝑑(𝑥) and 𝑛(𝑥) describe random processes, while 𝑠(𝑥) is determin-
istic. We define the spatial SNR as

SNR(𝑢) = 𝑆(𝑢)
𝑁(𝑢)

, (4)

where 𝑆(𝑢) and 𝑁(𝑢) denote power spectra of 𝑠(𝑥) and 𝑛(𝑥). See Ap-
pendix A.1 for some general properties of power spectra. This definition

is different from e.g. the one used in [13], because we include effects
such as phase contrast or different strengths of the absorption signal. It
stems from the SNR being proportional to the signal power spectrum.
This is necessary to characterize the SNR for a specific sample, therefore
its value cannot be sample-independent.

To determine the SNR(𝑢), we use a series of images of the same
signal. This means that the images are taken with the same sample
under identical conditions, including identical integration times 𝜏 for
the detector. Let {𝑑𝑗 (𝑥)} be the series of images and

𝑑avg(𝑥) =
1
𝐾

𝐾
∑

𝑗=1
𝑑𝑗 (𝑥) (5)

the average of the series. The power spectrum of an arbitrary image 𝑑
satisfying Eq. (3) is

𝐷(𝑢) = |{𝑑}(𝑢)|2 = 𝑆(𝑢) +𝑁(𝑢) (6)

because signal and noise are uncorrelated, see Appendix A.2 for a
derivation. We will denote the power spectrum of the 𝑑𝑗 as 𝐷𝜏 and the
power spectrum of 𝑑avg as 𝐷avg and get

𝐷𝜏 (𝑢) = 𝑆𝜏 (𝑢) +𝑁𝜏 (𝑢) (7)

𝐷avg(𝑢) = 𝑆𝜏 (𝑢) +
1
𝐾2

𝐾
∑

𝑗=1
𝑁𝜏 (𝑢)

= 𝑆𝜏 (𝑢) +
1
𝐾
𝑁𝜏 (𝑢) (8)

because noise is uncorrelated with any other signal (including other
noise). Note that in real space, noise has an average of zero and the
positive and negative contributions from a noise sum cancel each other
out partially.

The values used for 𝐷𝜏 (𝑢) should be calculated as an average of the
power spectra calculated for the individual 𝑑𝑗 to reduce statistical errors.
Then 𝐷avg(𝑢) is the power spectrum of the real space average of the
images and ⟨𝐷𝜏 (𝑢)⟩ is the average power spectrum of the same images.
We can solve Eqs. (7) and (8) for signal and noise power spectra as
functions of detected images

𝑆𝜏 (𝑢) =
𝐷avg(𝑢) − ⟨𝐷𝜏 (𝑢)⟩𝐾−1

(

1 −𝐾−1
) (9)

𝑁𝜏 (𝑢) =
⟨𝐷𝜏 (𝑢)⟩ −𝐷avg(𝑢)

(

1 −𝐾−1
) . (10)

These power spectra can also be of interest for certain evaluations
and we can calculate the spatial SNR from them as

SNR𝜏 (𝑢) =
𝑆𝜏 (𝑢)
𝑁𝜏 (𝑢)

=
𝐷avg(𝑢) − ⟨𝐷𝑗 (𝑢)⟩𝐾−1

⟨𝐷𝑗 (𝑢)⟩ −𝐷avg(𝑢)
(11)

which can be used to calculate the SNR(𝑢) from a series of measured
images. We propose three applications for this measurement method:

∙ Optimization of an imaging setup with direct quantitative feed-
back. This could also be automated, e.g. for choosing the optimal
setup geometry or source spectrum.

∙ Determination of the integration time required to resolve details
of a certain size in an image (see Section 2.4).

∙ Noise suppression that uses the SNR, especially a Wiener Filter
(see Section 3).

If the final result of the measurement is derived through an arbitrary
transformation (e.g. negative logarithm) on an image, this method can
be extended to calculate the SNR of the final result.

It also be extended to cases in which a final result image is calculated
from a series of images (e.g. projections for a computed tomography).
In this case, SNR images under identical conditions must be measured
for every image in the series. If a final result 𝑟 is calculated from 𝑀
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