Accepted Manuscript

Significant improvement of GAGG: Ce based scintillation detector performance with temperature decrease

M. Korjik, V. Alenkov, A. Borisevich, O. Buzanov, V. Dormenev, G. Dosovitskiy, A. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, R.W. Novotny, G. Tamulaitis, V. Vasiliev, H.-G. Zaunick, A.A. Vaitkevičius

PII: S0168-9002(17)30790-8

DOI: http://dx.doi.org/10.1016/j.nima.2017.07.045

Reference: NIMA 59994

To appear in: Nuclear Inst. and Methods in Physics Research, A

Received date: 21 May 2017 Accepted date: 21 July 2017

Please cite this article as: M. Korjik, V. Alenkov, A. Borisevich, O. Buzanov, V. Dormenev, G. Dosovitskiy, A. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, R.W. Novotny, G. Tamulaitis, V. Vasiliev, H.-. Zaunick, A.A. Vaitkevičius, Significant improvement of GAGG: Ce based scintillation detector performance with temperature decrease, *Nuclear Inst. and Methods in Physics Research*, *A* (2017), http://dx.doi.org/10.1016/j.nima.2017.07.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

39

1	Significant improvement of GAGG:Ce based scintillation detector
2	performance with temperature decrease
3	
4	M.Korjik ¹ , V.Alenkov ³ , A.Borisevich ¹ , O.Buzanov ³ , V.Dormenev ⁴ , G.Dosovitskiy ⁵ , A.Dosovitskiy ⁶ , A.Fedorov ² , D.Kozlov ¹ , V.Mechinsky ¹ , R.W.Novotny ⁴ , G.Tamulaitis ⁷ ,
5	A.Dosovitskiy ⁶ , A.Fedorov ² , D.Kozlov ¹ , V.Mechinsky ¹ , R.W.Novotny ⁴ , G.Tamulaitis ⁷ ,
6	V.Vasiliev ³ , HG.Zaunick ⁴ , A. A. Vaitkevičius ⁷
7	
8 9	1- Research Institute for Nuclear Problems, Minsk, Belarus
10	
11	2-Radiation Instruments and New Components, Minsk, Belarus
12 13	3-Fomos Crystals, Moscow, Russia
14	5-1 omos Crystats, woscow, Russia
15	4-Justus Liebig University, Giessen, Germany
16	
17	5-Institute of Chemical Reagents and High Purity Chemical Substances, IREA, Russia
18 19	6-NeoChem, Moscow, Russia
20	o NeoChem, Moscow, Russia
21	7-Vilnius University, Vilnius, Lithuania
22	
23	
24	
2526	Abstract— This report presents results on the significant improvement of GAGG:Ce based
20	
27	scintillation detector performance with temperature decrease. When temperature of a PMT based
28	detector is lowered to -45°C, its amplitude response at registration of γ-quanta is improved by
29	30%; FHHM was found to be better up to factor of 0.85, whereas scintillation kinetics become
30	even faster in crystals co-doped with magnesium and magnesium and titanium. All this opens an
31	opportunity for a wide application of GAGG scintillation detectors, particularly in a combination
32	with SiPM photo-sensors, which signal-to-noise ratio would also improve with temperature
33	decrease.
3435	<i>Index Terms</i> —Inorganic scintillation material, GAGG scintillator, γ-quanta, photo-sensor
36	muex Terms inorganic scintination material, 07300 scintinator, y-quanta, photo-scrisor
37	Corresponding author: Mikhail Korjik (Mikhail.Korjik@cern.ch), 220030, Belarus, Minsk,
38	Bobruiskaya str. 11.

Download English Version:

https://daneshyari.com/en/article/5492552

Download Persian Version:

https://daneshyari.com/article/5492552

<u>Daneshyari.com</u>