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A paper has recently been published which describes the technique of so-called ‘spin tune mapping’ to measure
the ‘stable spin axis’ (spin closed orbit) of a spin polarized beam circulating in a storage ring. This paper presents
an independent analysis of the technique, and significantly different findings are reported below. In particular,
it is derived that there are several unquantified systematic errors which are not treated in the previous analysis.
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1. Introduction

A paper has recently been published [1] which describes the tech-
nique of so-called ‘spin tune mapping’ to measure the ‘stable spin axis’ of
a spin polarized beam circulating in a storage ring. The authors employ
nonstandard notation and terminology in [1]: the ‘stable spin axis’ is
the spin closed orbit or the rotation axis of the one-turn spin map on
the closed orbit of the ring. A review of spin dynamics in accelerators
can be found in [2]. It is claimed in [1] that the spin tune mapping
technique can determine the orientation of the stable spin axis to micro-
radian accuracy. Note, however, that the components of the polarization
vector were not measured directly in [1]. Instead, the direction of the
stable spin axis was deduced via measurements of the spin tune and the
application of a theoretical model.

I have independently examined the analysis in [1] and my findings
differ from the claims made in [1]. In addition to identifying various
errors of algebra, I found there are several unquantified systematic
errors which are not treated in the analysis in [1]. Numerous priority
claims are also made in [1]. I comment on some of those priority claims
and supply references to prior work in the literature [3–9].

This paper is organized as follows. Section 2 presents the basic
notation and definitions. The spin maps for relevant beamlines and ring
elements, which are pertinent to the analysis, are shown in Section 3.
The solution for the spin tune is derived in Section 4. Differences with
the formulas in [1] are pointed out. Section 5 presents the exact solution
of an idealized model. It is shown that the solution derived in Section 4
agrees with the exact solution, up to terms of the first order in small
quantities. However, the formulas derived in [1] do not agree with
the exact model, even for the first order terms. In particular, for the
scenario studied in [1], the determination of the radial component of the
stable spin axis is subject to large uncertainties, which are not accounted
for in the analysis in [1]. Section 6 comments on some of the priority
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claims made in [1] and describes prior work on the subject. Section 7
concludes.

2. Basic notation and definitions

We refer the reader to [2] for a review of spin dynamics in ac-
celerators, including the electric dipole moment (EDM). We treat a
particle of mass 𝑚 and charge 𝑒, with velocity 𝑣 = 𝛽𝑐 and Lorentz
factor 𝛾 = 1∕

√

1 − 𝛽2. The canonical particle coordinate and conjugate
momentum are denoted by 𝑟 and 𝑝, respectively. Most of the analysis
in this paper employs coordinate-free notation. Where explicit vector
components are required, we follow [1] and employ the (right-handed
orthonormal) basis vectors (𝑒𝑥, 𝑒𝑦, 𝑒𝑧), respectively radial (outward),
vertical (up) and longitudinal (along the ring reference axis). We denote
the spin vector by 𝑠, treated as a semiclassical unit vector, with magnetic
moment anomaly 𝐺 = (𝑔 − 2)∕2. We treat the vector polarization only,
and denote the polarization vector by 𝑃 . Neglecting the EDM,1 the spin
precession equation of motion in the externally prescribed electric and
magnetic fields of the accelerator (�⃗� and �⃗�, respectively) is given by the
Thomas–BMT (Bargmann–Michel–Telegdi) equation [11,12]

𝑑𝑠
𝑑𝑡

= − 𝑒
𝑚𝑐

[(

𝐺 + 1
𝛾

)

�⃗� −
𝐺𝛾
𝛾 + 1

(𝛽 ⋅ �⃗�)𝛽

−
(

𝐺 + 1
𝛾 + 1

)

𝛽 × �⃗�
]

× 𝑠 . (2.1)

Radiation fields are ignored and we treat nonradiatively polarized
beams only. In this paper, the spin state of a particle is parameterized
by a two-component spinor and the spin map through a beamline is

1 The semiclassical relativistic spin precession equation including EDM terms is given
in [10]. See also the review [2].
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parameterized using a 2 × 2 SU(2) matrix. The one-turn spin map on
the closed orbit is conventionally written as follows2

𝑀OTM = exp{−𝑖𝜋𝜈�⃗� ⋅ 𝑛0} . (2.2)

Here 𝜈 is the spin tune and �⃗� is a vector of Pauli matrices. The rotation
axis of the one-turn spin map on the closed orbit is denoted by the unit
vector 𝑛0 (this vector is also known as the ‘spin closed orbit’). For off-axis
motion, the quantization axis of the spin eigenstates is denoted by 𝑛(𝑟, 𝑝),
which is a function of the orbital phase space [13]. Throughout most
of this paper, we shall restrict attention only to motion on the closed
orbit. For a steady state spin polarized beam circulating in a storage
ring, i.e. after transients have decohered, the polarization vector 𝑃 is
parallel to the average 𝑃 ∥ ⟨𝑛⟩, where the average is taken over the
orbital phase space. In general, this average is almost parallel to 𝑛0, and
this approximation will be employed below. (See [14, Sec. (3.3)] for a
model example where ⟨𝑛⟩ is not parallel to 𝑛0.)

The model treated in [1] was a racetrack ring, with a solenoid
in each of the diametrically opposed straight sections. Optically, the
two arcs (also the straight sections) were identical except for lattice
imperfections. The two solenoids were treated as localized zero-length
perturbations. We shall treat the above model in this paper. The spin
tune in the unperturbed ring (no solenoids) was denoted by 𝜈0𝑠 and in
the full ring by 𝜈𝑠. The authors called 𝜈0𝑠 the ‘unperturbed spin tune’ [1].
The authors also employed the notation 𝑐 instead of 𝑛0 for the spin closed
orbit of the unperturbed ring and called it the ‘stable spin axis.’ It was
assumed in [1] that the polarization vector in the unperturbed ring (after
transients had decohered) points along 𝑐.

Note that the authors in [1] claimed to measure the direction of
the stable spin axis but they did not measure the components of the
polarization vector directly. Instead they determined the values of two
parameters 𝑎+ and 𝑎− [1, eq. (31)] where it was stated ‘Consequently,
the determination of 𝑎± amounts to the determination of the projections
of the stable spin axis 𝑐 onto a plane spanned by the vectors 𝑛1 and
𝑛 r
2 .’ (The vectors 𝑛1 and 𝑛 r

2 will be defined below.) A beam dynamics
study using stored polarized deuterons was performed at COSY using
two electron cooler solenoids in diametrically opposed straight sections.
The authors generated artificial longitudinal ‘imperfection fields’ using
the electron cooler solenoids. The formalism in [1] presents an analysis
of the data from that experiment. The experimentally measured quantity
was the spin tune. The authors employed the term ‘spin tune jump’ to
refer to the change in the spin tune 𝛥𝜈𝑠 = 𝜈𝑠 − 𝜈0𝑠 , with the solenoids on
and off. The direction of the stable spin axis was therefore deduced via
measurements of the spin tune jump and a theoretical model.

3. Spin maps

The analysis below treats only rings where the spin closed orbit is
vertical everywhere, in the ideal design, and the ring has no Siberian
Snakes or spin rotators. See [15] for a review of Siberian Snakes and spin
rotators in storage rings. COSY is an example of such a ring. We shall
mostly employ the notation in [1] for ease of reference to make contact
with their analysis. Note, however, that their notation does not follow
the standard practice in the field. The origin was placed just before the
first solenoid. The one-turn spin map is, with an obvious notation [1,
eq. (21)]

𝑀OTM = 𝑀A2
𝑀S2𝑀A1

𝑀S1 . (3.1)

Here the term ‘arc’ includes the straight sections (lattice imperfections in
the straight sections can tilt the spin closed orbit away from the vertical).
The one-turn spin map of the unperturbed ring (i.e. without solenoids)
is parameterized via

𝑀R = 𝑀A2
𝑀A1

= exp{−𝑖𝜋𝜈0𝑠 �⃗� ⋅ 𝑐} . (3.2)

2 The closed orbit includes the effects of lattice imperfections and in general is not
equal to the ideal design orbit of the ring.

See [1, eq. (17)] and Eq. (2.2) above. The spin map of each arc is
parameterized via [1, eq. (24)]

𝑀Aj = exp
{

− 𝑖
2
𝜃𝑗 (�⃗� ⋅ �⃗�𝑗 )

}

(𝑗 = 1, 2) . (3.3)

Here 𝜃𝑗 is the spin rotation angle and �⃗�𝑗 is the spin rotation axis
of the spin map for each arc. It is assumed that 𝑐 is almost but not
exactly vertical. (It would be exactly vertical in the absence of lattice
imperfections). The arcs are almost but not exactly identical (i.e. they
would be exactly identical in the absence of lattice imperfections).
Hence �⃗�1 and �⃗�2 are both nearly vertical (but they are not assumed
to be equal). Also 𝜃1 ≃ 𝜋𝜈0𝑠 and 𝜃2 ≃ 𝜋𝜈0𝑠 (but they are not assumed to be
equal). The spin map of each solenoid is parameterized via [1, eq. (25)]

𝑀Sj = exp
{

− 𝑖
2
𝜒𝑗 (�⃗� ⋅ 𝑛𝑗 )

}

(𝑗 = 1, 2) . (3.4)

Here 𝜒𝑗 is the spin rotation angle and 𝑛𝑗 is the spin rotation axis of
each solenoid.3 The solenoids are treated as zero length elements. The
vectors 𝑛1 and 𝑛2 are nearly longitudinal (along the reference axis of the
ideal ring) but they are not assumed to be exactly equal. The angles 𝜒1
and 𝜒2 were variable parameters in the analysis in [1]. In addition let
us define [1, eq. (31)]

𝜒± =
𝜒1 ± 𝜒2

2
. (3.5)

In addition to 𝑛1 and 𝑛2, the authors also employed a vector 𝑛 r
2 defined

via [1, eq. (26)]

𝑀−1
A1

𝑀S2𝑀A1
≡ exp

{

− 𝑖
2
𝜒2(�⃗� ⋅ 𝑛 r

2 )
}

. (3.6)

It is given by [1, eq. (27)]

𝑛 r
2 = cos 𝜃1 𝑛2 + sin 𝜃1 (𝑛2 × �⃗�1) + (1 − cos 𝜃1)(�⃗�1 ⋅ 𝑛2)�⃗�1 . (3.7)

The authors then defined the spin map of the ‘combined artificial
imperfection’ via 𝑀AI = 𝑀−1

A1
𝑀S2𝑀A1

𝑀S1 [1, eqs. (23) and (28)]. The
full one-turn spin map is then given by 𝑀OTM = 𝑀R𝑀AI. The authors
also defined the two variables [1, eq. (31)]

𝑎± = 𝑐 ⋅ 𝑛 r
2 ± 𝑐 ⋅ 𝑛1 . (3.8)

The above expressions are all in coordinate-free notation. The authors
then made various approximations, using a coordinate basis, to derive
the approximate expressions up to the first order in small quantities [1,
eq. (78)]

𝑎± ≃ cos(𝜋𝜈0𝑠 )𝑐𝑧 − sin(𝜋𝜈0𝑠 )𝑐𝑥 ± 𝑐𝑧 . (3.9)

For later use, I shall define the two parameters

𝛼± = 𝑐 ⋅ 𝑛 r
2 ± 𝑐 ⋅ 𝑛1 . (3.10)

In coordinate-free notation, these are the same as 𝑎± in Eq. (3.8).
However, when expanded in components, I shall show their values
are different from those in Eq. (3.9). The matter will be treated
below.

4. Spin tune

The spin tune of the full ring (with solenoids) is obtained from the
parameterizations of the spin maps above and is obtained via cos(𝜋𝜈𝑠) =

3 The vectors 𝑛1 and 𝑛2 should not be confused with the quantization axis of the spin
eigenstates, which is conventionally denoted by 𝑛 by workers in the field, see, e.g. [2,13].
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