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a b s t r a c t

The resolution of the PET scanners is limited by the parallax error due to the missing knowledge about Depth
of Interaction (DoI) of the incident photons inside the scintillation crystal. In real time, a DoI calculator must
fulfill a suitable event processing rate, which requires low complexity DoI algorithms. The DoI is obtained when
the crystal within a phoswich detector is identified based on the shape of the scintillation light distribution.
The main idea of this paper is to enhance the performance of crystal identification by using a Support Vector
Machine (SVM) classifier and Discrete Fourier Transform (DFT) feature extractor. Besides, the paper introduces
a complexity reduction method by merging the SVM classification phase and DFT in order to comply with the
real-time rate. A real-time FPGA-based merged DFT-SVM DoI method has been implemented and validated to
discriminate pulse-shapes of LSO-LuYAP scintillation crystals events. A correct assignment of 92.2% at rate of
6.2 Mevents/s is achieved for a sample of ∼100 000 pulses from LSO-LuYAP crystals read out using vacuum
photomultipliers. Compared with recent DoI methods, the proposed method provides the highest performance
and fulfills the required real-time rate of PET scanners

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the common nuclear imaging techniques is the Positron
Emission Tomography (PET) [1,2] which provides three dimensional
functional images of the biological systems. PET has many applications
such as in the early detection, diagnosis and evaluation of diseases. The
conventional PET scanner is composed of a ring of scintillator crystals,
which absorb gamma rays and emit photons, connected to photon-
sensing devices (i.e. sensors). The emitted photons hit the sensors that
generate electrical pulses with certain decay constants, depending on
the material of the crystals. The typical commercially available sensors
are photomultiplier tubes (PMTs).

Distortion in high resolution PET images usually occurs due to the
parallax-error (known as depth of interaction (DoI) error) [3], which can
be eliminated by using Phosphor sandwich (phoswich) detectors [4].
The phoswich detector is a stack of two or more different scintillation
crystals; with different decay constants, optically coupled to a single
PMT [5]. By identifying the crystal in which the scintillation light
has been produced, the PET photon’s DoI is determined. This crystal
identification (CI) process requires applying pulse shape discrimination
(PSD) method, such as in [6–17].
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The performance of the discriminator, which depends on photon
counting efficiency and the fidelity of the detected photons, has in
turn a strong effect on the PET image quality [18]. The fidelity of the
detected photons is the degree of exactness with which the PET image is
reconstructed. Recent PET systems use an on-chip discriminator, which
captures multiple-event coincidence, for better imaging performance
evaluation. In such case, the PET sensor consists of multiple blocks
of scintillator matrices with PMT and on-chip discriminator, one slow
control board and finally an optical link to send the data for further pro-
cessing to the PC, as described in [19,20]. That configuration guarantees
better image resolution if the discriminator follows the sensor detection
rate and provides an efficient CI performance.

The rate of PET events varies from one system to another corre-
sponding to the number of detectors and the hardware configuration.
According to the ClearPET™ system [20,21], 1.5 M events/s is the
required PSD real time rate. While the PET detector module, which was
proposed in [19], supports up to 6 M events/s.

On the other hand, there are digitization parameters, which are the
sampling rate, the number of used samples of scintillation pulses and
cut off frequency of the anti-aliasing filter, that affect the performance
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Fig. 1. Digital PSD scheme.

and the complexity of the PSD. Recent mathematical analysis of the
frequency spectra, which is proposed in [22], selects optimally the
digitization criterion and determines the most discriminated frequency
in order to reduce the number of needed frequency components and
required computations.

Furthermore, in order to achieve a high discrimination performance,
complicated digital PSD algorithms were used [23,24]. These PSD
techniques usually consist of three main processes as indicated in
Fig. 1. The first step is preprocessing, which includes amplification,
filtering, digitization, and normalization. The second step is the feature
extraction, which can be performed by transforming the scintillation
pulses to another domain. The Discrete Fourier Transform (DFT) is one
of those transformers which were used in PSD algorithms. Finally, a
classifier is applied to classify the scintillation pulses.

Despite of its high complexity, the DFT components were used as ex-
tracted features of the pulses, and classified by the statistically threshold
metrics [11]. While the performance of the DFT based method can be
enhanced by using the Support Vector Machine (SVM) classifier, the
algorithm complexity will be increased. Moreover, SVM does not have
a complex kernel that could directly manipulate the complex numbers
of its input data sets. On the other hand, recent researches [25,26]
suggested alternative methods to use the SVM with complex numbers.

The main objective of this work is to further improve the current
performance of the widely adopted DFT DoI method by using the SVM as
a classifier. In addition, the DFT and SVM are merged in order to reduce
the PSD complexity. On the other hand, most of DoI methods are utilized
at low event rates and do not meet the on-chip requirements. As a result,
the proposed merged DFT-SVM DoI method is a promising method for its
high level of accuracy and efficient computation. Besides, the merged
DFT-SVM method is easily realized on an FPGA and the entire pulse
processing followed by the proposed method of discrimination can be
equipped in a single chip to fulfill the real time requirements of PET
scanners.

The rest of the paper is organized as follows. The mathematical
proof of the merged DFT-SVM DoI method is discussed in Section 2. In
Section 3, the proposed method is applied on LSO and LuYAP pulses, and
the results are shown and discussed in Section 4. Finally, the conclusion
is provided in Section 5.

2. Proposed merged DFT-SVM DoI method

The proposed method uses the DFT as a feature extractor and the
SVM as a classifier in order to achieve a high discrimination performance
in DoI applications. The SVM is composed of two phases; the learning
phase and the classifying phase. The learning phase of the SVM is
usually performed offline in a computer by software. On the other
hand, the classification phase that includes a decision function for the
classified target can be implemented in an FPGA. This decision function
complexity is of 𝑂 (𝑀𝑁) multiplications and 𝑂 (𝑀𝑁) additions; for
𝑁 features and 𝑀 support vectors. Moreover, the DFT adds more
computation complexity (i.e. 𝑂(𝑁 𝑙𝑜𝑔 𝑁) multiplications and additions)
for computing its complex outputs of 𝑁 frequency components. The
proposed Merged DFT-SVM combines the DFT and SVM algorithms in
a single step to reduce the computation complexity and achieve the
required real time rate of PET systems. The following subsections discuss
the DFT and SVM, and introduce the proposed method.

2.1. The discrete Fourier transform

The Fourier Transform (FT) converts the signal into a periodic
sequence of complex valued components of frequency. In discrete
form, the input signal 𝑝 is represented by a finite series of uniformly
distributed 𝑁 samples. While, the DFT output (𝑃 ) is the equivalent
length series of uniformly distributed samples of the FT, and is given
by,

𝑃 = 𝐷𝐹𝑇 (𝑝) = 𝑝𝑊 (1)

where 𝑊 is the transformation matrix given by:
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and 𝑤(𝑛)(𝑘) = 𝑒−𝑖
2𝜋𝑛𝑘
𝑁 .

2.2. The support vector machine

SVM has a strong mathematical background and wide applications,
such as image processing, applied statistics, computer vision, pattern
recognition, and machine learning [27]. SVM is a supervised learning
algorithm, which means it uses a training data set and a classification
algorithm by which it determines if something belongs to a certain class.
In other words, the goal of the SVM is trying to find the optimal sep-
arating hyperplane (i.e. decision boundary) that maximizes the margin
between two or more classes of training data points. This hyperplane
lies at the margin’s midway and must
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Then the solution of this problem is achieved by optimizing the
following Lagrange equation:
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where the input for this problem is a training set of pair samples (𝑉 , 𝑦),
where 𝑉 is the input features vectors, and 𝑦 is the output result which
indicates the class label (𝑦 ∈ {1,−1}).

On the other hand, the outputs of solving Eq. (4) are ℎ, 𝑏 and 𝛼’s. ℎ is
the set of weights, one for each input feature, whose linear combination
predicts the value of output 𝑦. While 𝑆’s (called the support vectors) are
the selected points from the input training features’ data (𝑉 ) that satisfy
the maximum margin above and below the hyper-plane. The output b
(i.e. bias), and alphas (i.e. Lagrange multiplier constants) are parameters
which determine a unique maximal margin solution. The 𝑦𝑖’s and 𝛼𝑖’s
correspond to the selected support vectors 𝑉𝑖’s.

The classification of an unknown vector 𝑈 is predicted by the
decision function 𝑑 (𝑈 ), which is positive for class 1 and negative for
class 2, and is defined for kernel (𝐻) as follows:

𝑑 (𝑈 ) = 𝑠𝑖𝑔𝑛
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