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A B S T R A C T

We present an improved statistical method for the calculation of mean lifetime of nuclei in a decay chain with an
uncertain relation between mother and daughter nuclei. The method is based on the formation of time
distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter
nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, the sum of these
distributions has flat term on which an exponential term is superimposed. Parameters of this exponential
function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation
data.

1. Introduction

Basic stochastic methods are intensely used in today's experiments
that aim to determine lifetime of unstable nuclei. Most of the already
developed methods for calculating mean lifetime of daughter element
in the decay chain strongly depend on correct identification of the exact
mother-daughter pair in the time sequence data. In case of low activity
of the mother isotope (compared to decay constant λ of the daughter) it
is easy to determine the mother-daughter pair with high probability,
but the statistics is low. However, raising the activity will raise the
statistics, but decrease the probability for correct pairing of mother-
daughter nuclei.

Bernas et al. (Ref. [1]) analyzed the time correlation between the
detection times of a fragment of interest and of a subsequent β particle.
In order to obtain the beta decay half-life they formed the distribution
of time intervals only between the first β detected after each fragment.
They also provided the random distribution by collecting time intervals
between the last β occurring before a fragment and the fragment. In
this article, we present a technique for determination of mean lifetime
of nuclei in decay chain without the need to know the exact relationship
between particular decay of the parent and daughter nuclei. This
stochastic method is explained in Section 2. One of the benefits of this
approach is that the increase of activity of mother nuclei is followed by
decrease of error of the determined lifetime. Moreover, the method is
not activity dependent, meaning that activity may vary during the data
acquisition, which may be the case in many real situations. We also pay
special attention to determination of errors depending on the activity,
for fixed time of measurement and constant activity. The presented

concept is checked using an extensive set of Monte Carlo simulation
data. The simulation program is custom made and developed by our
group. The results of the MC simulation are shown in Section 4 and
Section 5.

2. Statistical procedure of formation of time intervals
distribution

Let us consider the following decay chain X →Y →Z. We introduce
two parameters that are of importance for our analysis: activity A(X) of
the mother nuclide X, and the decay constant λ(Y) of the daughter
nuclide Y. Our aim is to determine the mean lifetime of the daughter
nuclide, which is the inverse of the decay constant, τ=1/λ. If the
radioactive equilibrium is achieved, meaning A(X)=A(Y), we distin-
guish three cases:

1) If the mean lifetime of the Y nuclide is much longer than the time
between two X decays, meaning A(X) > > λ(Y), there is a strong
possibility that successive decays of X and Y nuclei do not belong to
the same X →Y →Z chain.

2) Conversely, if the mean lifetime of the Y nuclide is much shorter
than the time between two X decays, meaning A(X)«λ(Y), there is
strong possibility that the decay of a nucleus X is followed by the
decay of nucleus Y, which is the daughter nucleus of the mentioned
nucleus X.

3) If A(X)~λ, it is not clear what the relationship between decay of X
and the following decay of Y is.

http://dx.doi.org/10.1016/j.nima.2017.01.004
Received 26 May 2016; Received in revised form 3 January 2017; Accepted 3 January 2017

⁎ Corresponding author.

Nuclear Instruments and Methods in Physics Research A 850 (2017) 68–71

Available online 04 January 2017
0168-9002/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01689002
http://www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2017.01.004
http://dx.doi.org/10.1016/j.nima.2017.01.004
http://dx.doi.org/10.1016/j.nima.2017.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2017.01.004&domain=pdf


As far as the second case is concerned, the identification of the right
decay is good. It is possible to form a set of time differences between
the decays of the mother nuclei and the decays of the corresponding
daughter nuclei. The average of these differences is the estimate of the
mean lifetime of nucleus Y. The downside of this case is that the
statistics is low since the activity of nucleus X is low.

We are interested in the first case where the statistics is high but the
identification of the right decay is poor. Especially if there is an
abundance of nuclei X around the detector, there is a possibility that
after the formation of one Y nucleus one or more other Y nuclei may be
detected before the first one decay. Because of the simultaneous
presence of many Y nuclei it is not possible to determine the order in
which the nuclei decay, thus it is not possible to determine the lifetimes
of those nuclei (Fig. 1).

We observe an array of signals originating from the decay of X and
Y nuclei that are randomly settled on time scale. Start signals arise at
the time instants of decay of X nuclei (X event). Also, stop signals arise
at instants of decay of Y nuclei (Y event). This array of start and stop
signals may be treated in many different ways in order to obtain the
decay constant of the daughter radionuclide. One possibility is to join
weights for the probability of correct pairing with each pair of start-
stop signals formed. In other words, it is possible to calculate the
probability for each pair that it is a real coincident pair, as in Ref. [2].
Another solution is to neglect all the cases where a start signal is not
followed by a stop signal, but by another start signal; and to keep only
sequences with clear start-stop coincident pairs, as it is done in Ref.
[3]. Both methods have up and downsides.

Our approach is not to neglect any signal in order to keep high
statistics. We pair different start and stop signals, but we do not assign
probability of correct pairing for each pair. Instead we build and
investigate the time distribution of intervals between a start signal and
all the following stop signals, as shown in Fig. 1.

Let us denote the following variables:

A – the activity of the parent X, ε ε,X Y – the efficiency for detection
start signal (decay of X) and stop signal (decay of Y),
p t( )n X Y( → ) – the probability that in the interval [0, t] exactly n stop
signals which originate only from random coincidence between X
and Y decay occur,
p t( )n X YC( → ) – the probability that in the interval [0, t] exactly n stop
signals occur, in which one true coincidence between X and Y decay
is found (there can be only one!),
p t( )n – the probability that in the interval [0, t] exactly n stop signals
occur regardless of the origin,
p t( )n

Coll - the probability that in the interval [0, t] exactly n time
intervals are collected - which include detector efficiency εX for
detection start signal (decay of X) and detector efficiency εY for
detection stop signal (decay of Y).

It is clear that:

p p p= +n n X Y n X YC( → ) ( → )

The probability to collect n uncorrelated time intervals are given by
recursive formula:
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The probability to collect n time intervals with one true coinci-
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The sum of probability distributions for all possible n (from 1 to
infinity) is:

Fig. 1. A time sequence with the applied procedure of collecting the time intervals
between succeeding start-stop pairs of signals. The start and the stop signals are labeled
by 0's (X decay events) and 1's (Y decay events), respectively. The arrows correspond to
the collected time intervals.

Fig. 2. Probabilities graphics for the first 5 intervals between start and stop signals and sums of probabilities for all intervals without (a) and with (b) coincidence between start and stop
signals.
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