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a b s t r a c t

This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern
(FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described
in detail and the results of the characterization study performed with an X-ray gun will be presented,
together with the first results on time resolution based on data collected with muon/pion test beams.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time resolution of classical Micropattern Gas Detectors
(MPGD), like Gas Electron Multiplier (GEM) and Micromegas, is
dominated by the fluctuations on the position on the first ioni-
zation cluster in the drift gap. The average time needed for the
nearest ionization cluster to reach the amplification stage is in-
deed given by υ=t d/ d, where d is the distance of the closest
cluster to the first amplification region and follows the distribu-
tion λ−e x/x , where λ is the average number of primary clusters
generated by an ionizing particle inside the gas per length; υd is
the drift velocity, that depends on the gas mixture and the applied
drift field. The contribution to the time resolution of the drift ve-
locity is σ λυ= ( )−

t d
1: with a typical drift gap of the order of 3–4 mm

and with a proper choice of the gas mixture, MPGDs can reach a
time resolution of the order of 5–10 ns. An improvement in the
time resolution, to reach the 1 ns scale, can be obtained working
on the segmentation of the drift gap: the principle is to divide a
single thick drift region in many thinner drift regions, each cou-
pled to its amplification stage. The reduction in time resolution
that can be obtained is so proportional to the number of stages ND

employed: σ λυ= ( )−Nt d D
1. The first prototype of Fast Timing Mi-

cropattern (FTM) detector exploits this principle using two
250 μm-thick drift gaps, each coupled with an amplification region
composed by a fully resistive WELL. The construction of con-
secutive drift-amplification stages is allowed by the use of resistive
layers to polarize drift and multiplication volumes. The overall
structure is then transparent to the signal that can be extracted
from every amplification stage.

2. The Fast Timing Micropattern detector

The structure of the first prototype of fast timing micropattern
(FTM) detector is described in [1]. It is composed of two in-
dependent drift-amplification stages (Fig. 1): each amplification
region is based on a pair of polyimide foils, i.e. kapton, stacked due
to the electrostatic force induced by the polarization of the foils:
the first foil, perforated with inverted truncated-cone-shaped

holes (with top base 100 μm and bottom base 70 μm and pitch
140 μm), is a 50 μm thick polyimide foil (Apical) from KANECA,
coated with diamond-like carbon (DLC) technique, to reach a
specific surface resistance of up to 800 MΩ/□; the second foil is
25 μm thick XC DUPONT KAPTON, with a resistivity of 2 MΩ/□. The
drift volumes are 250 μm thick, with planarity ensured by overlay
pillars, 400 μm diameter and pitch of 3.3 mm. The active area of
the prototype is of the order of 20 cm2. The induced signal can be
picked up from the readout electrode, but also from the drift
electrode, through a capacitive coupling.

3. Characterization with X-rays

The first characterization of the FTM prototype was performed
at CERN with a AMPTEK MINI-X X-ray tube, with Ag cathode fi-
lament (22 keV X-rays). Examples of signals picked up from the
drift and readout electrodes and read out with an electronics chain
composed by a preamplifier ORTEC 142PC and an amplifier ORTEC
474, are shown in Fig. 2.

The rate from both the readout and drift electrodes at different
values of current from the X-Ray gun, i.e different values of in-
cident flux up to the maximum available from the source, is shown
in Fig. 3. The response of the detector, for both the electrodes, is

Fig. 1. Transverse view of the first prototype of FTM detector.
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