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A B S T R A C T

Since the baseline of the unipolar pulse shaper have the direct-current (DC) offset and drift, an additional
baseline estimator is need to obtain baseline values in real-time. The bipolar zero-area (BZA) pulse shapers can
be used for baseline restoration, but they cannot restrain the baseline drift due to their asymmetrical shape. In
this study, three trapezoids are synthesized as a symmetrical zero-area (SZA) shape, which can remove the DC
offset and restrain the baseline drift. This baseline restoration technique can be easily implemented in digital
pulse processing (DPP) systems base on the recursive algorithm. To strengthen our approach, the iron's
characteristic x-ray was detected using a Si-PIN diode detector. Compared with traditional trapezoidal pulse
shapers, the SZA trapezoidal pulse shaper improved the energy resolution from 237 eV to 216 eV for the
6.403 keV Kα peak.

1. Introduction

Many pulse shaping methods are used to improve the energy
resolution and the stability of radiation measurement systems, such
as the Gaussian shaper, trapezoid shaper, cusp-like shaper and 1/f
shaper [1–3]. Since these methods are unipolar in shape and are not
zero-area, The DC offset and drift exist in the baseline of the pulse
shaping. Therefore, a baseline restorer should be designed to accurately
extract the peak location of the pulse signals. The optimum baseline
filter theory have been discussed in some literatures [4,5]. Some digital
baseline restorers are also already implemented in the digital systems
and even can be used in high count rates systems [6–9]. But these
baseline restoration approach may be more complex than their pulse
shaping.

The baseline filter and restoration method of the zero-area pulse
shaping have been mentioned have been mentioned in the reference
[10]. But it cannot be easily implemented in the digital systems. Ref.
[11] studied the bipolar triangular shaper for pile-up correction. Since
the triangular shape is not a zero-area, its baseline would have serious
undershoot at the pulse pile-up. The BZA trapezoidal shaper for
neutron-gamma discrimination was studied in Ref. [12], which used
the flat-top to determine the neutron and gamma signals. Due to its
zero-area shape, the BZA trapezoidal shaper can be used for baseline
restoration, but cannot restrain the baseline drift. The BZA cusp-like

shaper, which is also not a symmetrical shape, was studied in Ref. [13].
In this work, we use an simplest SZA trapezoidal shape based on the
extensively applied trapezoidal shaper. Its zero-area shape can be used
for baseline restoration, and its symmetrical shape can automatically
eliminate the baseline drift. Most of all, It can be easily implemented in
field programmable gate array (FPGA) and only need a little logic
element by the recursive algorithm.

2. Method of the baseline restoration

The exponential signal is a typical output of a nuclear detector. The
digital signal processing method of the exponential signal using a
traditional trapezoidal pulse shaper is shown in Fig. 1 [14]. The analog
pulse signal is digitized by the high-speed ADC, and then the digital
pulse signal is deconvoluted to remove the exponential tails in order to
obtain a unit impulse signal. Finally, the unit impulse signal is put into
the synthesis system of the pulse shaping. Since the input of the
synthesis system is the unit impulse signal, δ[n], the output of the
trapezoidal shaper is merely the transfer function hX[n] of synthesis
system.

The function fitting of the nuclear pulse signal frequently uses the
uni-exponential and bi-exponential models [15]. In this work, the
original pulse signals are characterized by the uni-exponential model
and the discrete expression to perform the characterization is shown in
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Eq. (1).

s n Aa u n n B Cn u n[ ] = [ − ] + ( + ) [ ]n n−
00 (1)

Where a=exp(-TS/τ0), TS is the ADC sampling period, n0 is the initial
position of the pulse signal, and u[n] is the discrete step signal. In order
to facilitate the analysis of the baseline restoration technique, Eq. (1)
contains an initial DC offset, B, and a baseline shift, Cn, at a particular
rate. The baseline shift sections have led to an imbalance of the
bilateral baseline, which can be used to analyze the baseline drift. First,
an analysis must be performed on the influence of the deconvolution
system on the baseline of the original pulse signal. Eq. (2) shows the
recursive difference equation of the deconvolution system.

v n s n as n[ ] = [ ]− [ −1] (2)

Eq. (1) is substituted into Eq. (2) to derive the output, v[n], of the
deconvolution system.

v n Aδ n n Bδ n a B Cn u n[ ] = [ − ]+ [ ]+(1 − )( + ) [ −1]0 (3)

Eq. (3) show that v[n] still contains a baseline DC offset and a
baseline drift. As a result, the deconvolution system cannot restore the
baseline, and the baseline is only reduced. In addition, v[n] also
includes two unit impulse signals. The Aδ[n-n0] is from the deconvolu-
tion of the pulse signal, and the Bδ[n] is from the deconvolution of the
step signal (DC offset). The unit impulse signals are synthesized to the
expected shape through the pulse synthesis system, but the baseline DC
offset and the baseline drift are not clearly identified. Thus, the analysis
of the convolution of v[n] and the transfer function, hX[n], is shown in
Eq.(4).
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Where N is the number of points used for the pulse shaping. The
convolution is divided into four parts. The two parts on the left are the
impulse responses hX[n-n0] and hX[n]. The third part is equivalent to
a single integral of hX[n], and the fourth part is equivalent to double
integral of hX[n]. The last two parts directly determine the change of
the baseline through the pulse shaping. Selecting a=0.988, B=0.2 and
C=0.001 to analyze the integral of the pulse shaper's transfer functions,
such as the trapezoidal shaper, the BZA trapezoidal shaper and the SZA
trapezoidal shaper. The shaping time is 15μsec and the corresponding
flat-top time is 1μsec.

Fig. 2 shows the integral of the trapezoidal shaper's transfer
function, which generates a stable baseline DC offset through a single
integral of its transfer function while the double integral of its transfer
function generates a baseline drift. The baseline variations of the input
pulse signal have the same influence on the baseline of the trapezoidal
shaper. The baseline of the BZA trapezoidal shaper is stable and has no
DC offset through the single integral, but the double integral of its
transfer function generates a stable baseline DC offset. Thus, the BZA
trapezoidal shaper cannot restrain the baseline drift. However, the
baseline of the SZA trapezoidal shaper is stable through both single
integral and double integral, so it effectively can both restore the

baseline and restrain the baseline DC drift. In addition, Fig. 2 shows
the normalized amplitude, and it can be observed that the baseline
fluctuations of the SZA trapezoidal shaper are the smallest among these
shapers.

3. Recursive algorithm of the SZA trapezoidal shaper

The algorithm of the SZA trapezoidal shaper is based on the
recursive difference equations in the time domain [16], as shown in
Eqs. (5)–(11). Since the recursive algorithm is beneficial to reduce the
multiplication operations, it can output the results in real-time.

v n s n a s n[ ] = [ ]− ∙ [ −1] (5)

p n v n v n l[ ] = [ ]− [ − ] (6)

q n p n p n l m[ ] = [ ]− [ − − ] (7)

r n r n q n[ ] = [ −1]+ [ ] (8)

x n x n r n[ ] = [ −1]+ [ ] (9)

y n x n x n l m[ ] = [ ]− [ −2 − ] (10)

z n y n l m y n[ ] = [ −2 − ]− [ ] (11)

Where l is the hypotenuse points of the isosceles trapezoid and m is the
flat-top's points. When m=0, the shapebecomes an SZA triangle. Fig. 3
shows the recursive method of the SZA trapezoidal shaper, which can

Fig. 1. Functional block diagram of a trapezoidal pulse shaping system using the
unfolding-synthesis technique.

Fig. 2. The integral of the transfer functions (a)the results of the trapezoidal shaper, (b)
the results of the BZA trapezoidal shaper, and (c)the results of the SZA trapezoidal
shaper.

Fig. 3. The recursive method of the SZA trapezoidal shaper.
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