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A B S T R A C T

Numerical inversion is a general detector calibration technique that is independent of the underlying spectrum.
This procedure is formalized and important statistical properties are presented, using high energy jets at the
Large Hadron Collider as an example setting. In particular, numerical inversion is inherently biased and
common approximations to the calibrated jet energy tend to over-estimate the resolution. Analytic approxima-
tions to the closure and calibrated resolutions are demonstrated to effectively predict the full forms under
realistic conditions. Finally, extensions of numerical inversion are presented which can reduce the inherent
biases. These methods will be increasingly important to consider with degraded resolution at low jet energies
due to a much higher instantaneous luminosity in the near future.

1. Introduction

At a proton-proton collider like the Large Hadron Collider (LHC),
quarks and gluons are produced copiously. These partons fragment to
produce collimated streams of colorless particles that leave their energy
in the calorimeters of the ATLAS and CMS detectors.1 The energy
depositions are organized using jet clustering algorithms to stand as
experimental proxies for the initiating quarks and gluons. The most
widely used clustering scheme in ATLAS and CMS is the anti-kt
algorithm [3] with radius parameter R=0.4. Even though the inputs
to jet clustering (topological clusters for ATLAS [4,5] and particle flow
objects for CMS [6,7] are themselves calibrated, the average recon-
structed jet energy is not the same as the true jet energy, because of
various detector effects. To account for this, calibrations are applied to
each reconstructed jet.

2. Numerical inversion

The jet calibration procedures of ATLAS [8] and CMS [9,10] involve
several steps to correct for multiple nearly simultaneous pp collisions
(pileup), the non-linear detector response, the η-dependence of the jet
response, flavor-dependence of the jet response, and residual data/
simulation differences in the jet response. The simulation-based

corrections to correct for the calorimeter non-linearities in transverse
energy ET and pseudorapidity η are accounted for using numerical
inversion.

The purpose of this note is to formally document numerical
inversion and describe (with proof) some of its properties. In what
follows, X will be a random variable representing the particle-jet ET
and Y will be a random variable representing the reconstructed jet ET.
Define.2
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Where the subscript indicates that we are taking the mean of the
stated distribution and ‘’ stands for expected value (= average). In
practice, sometimes the core of the distribution of Y X x| = is fit with a
Gaussian and so the effective measure of central tendency is the mode
of the distribution. Therefore in analogy to Eqs. (1) and (2), we define
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We will often drop the subscript of f and R for brevity in the text, when
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1 Jets have been calibrated in previous experiments, such as the Tevatron CDF [1] and D0 [2] experiments, but the methods were significantly different and so this note focuses on the
general purpose LHC experiments.

2 Capital letters represent random variables and lower case letters represent realizations of those random variables, i.e. X=x means the random variable X takes on the (non-random)
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it is clear which definition we are referring to. If not specified, f and R
will refer to a definition using a generic definition of central tendency.
For all sensible notions of central tendency, we still have that
R x( ) = f x

x
( ).

We will often think of Y X x f x σ x| = ∼ ( ( ), ( )), where this notation
means ‘Y given X=x is normally distributed with mean f(x) and
standard deviation σ x( )’; however, in this note, we will remain general
unless stated otherwise. The function R(x) is called the response
function. Formally, numerical inversion is the following procedure:

1. Compute f(x), R(x).
2. Let R y R f y( ) = ( ( ))∼ −1 .
3. Apply a jet-by-jet correction: Y Y R Y↦ / ( )∼

.

The intuition for step 2 is that for a given value y drawn from the
distributionY X x| = , f y( )−1 is an estimate for x and then R f y( ( ))−1 is an
estimate for the response at the value of x that gives rise to Y. Let p(x)
be the prior probability density function of ET. Then we note that we do
not want to use X Y[ | ] instead of f Y( )−1 because the former depends
on p(x), whereas f (and thus f−1) does not depend on p(x), by
construction.

We can see now our first result, which will be useful for the rest of
this note:

The correction derived from numerical inversion is
Y Z f Y↦ = ( )−1 .
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2.1. Closure

One important property of numerical inversion is the concept of
closure, which quantifies whether the new distribution f Y X x( | = )−1

obtained after numerical inversion is centered at x, using the same
notion of central tendency as in the definition of f. In particular, define
the closure as
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and Cmo is defined in an analogous way. The symbol C will denote the
closure for a generic notion of central tendency. We say that numerical
inversion has achieved closure or simply closes if, for all x,

C = 1. (7)

2.2. Assumptions and definitions

The general results presented in the following sections are based on
three assumptions listed below. These requirements should be satisfied
by real detectors using calorimeters and trackers to reconstruct jets,
given that the detector-level reconstruction is of sufficiently high
quality.

1. f y( )−1 exists for all y in the support of Y, and f−1 is single-valued.
These may seem like obvious statements, but are not vacuous, even
for a real detector. For example, pileup corrections can result in non-
zero probability that Y < 0, so the function f must be computed for
all possible values of Y, even if the transverse energy is negative. At
the high-luminosity LHC (HL-LHC), the level of pileup will be so
high that the jet energy resolution may be effectively infinite at low
transverse energies (no correlation between particle-level and de-
tector-level jet energy). In that case, f−1 may not be single valued and
numerical inversion cannot be strictly applied as described in

Section 2.
2. f(x) is monotonically increasing: f x′( ) > 0 for all x. This condition

should trivially hold for any reasonable detector: detector-level jets
resulting from particle-level jets with a higher ET should on average
have a higher ET than those originating from a lower ET particle-
level jet. Note that this is only true for a fixed η. Detector
technologies depend significantly on η and therefore the η-depen-
dence of f (for a fixed x) need not be monotonic. We note also that
Assumption 1 implies that f x′( ) ≥ 0 or f x′( ) ≤ 0 for all x; so
Assumption 2 is equivalent to the additional assumptions that
f x′( ) ≠ 0 for any x, and that f x′( ) > 0 (as opposed to f x′( ) < 0).

3. f is twice-differentiable. The first derivative of f has already been
assumed to exist in Assumption 2, and the second derivative will also
be required to exist for some of the later results. In practice we
expect f to be differentiable out to any desired order.

We note that as long as the above three assumptions hold, the
theorems stated in the remainder of this paper are valid. In particular,
this implies that x could be any calibrated quantity that satisfies the
above constraints, e.g. the jet transverse momentum pT or the jet mass
m. We focus on the case of calibrating the ET for sake of concreteness.

We have separated the results in this paper into “Proofs” and
“Derivations”. The “Proofs” require only the three assumptions stated
above, and in particular do not assume anything about the shape of the
underlying distributions, e.g. that the distributions Y X x| = are
Gaussian or approximately Gaussian. The “Derivations” are useful
approximations that apply in the toy model described in Appendix I;
we expect them to apply in a wide variety of cases relevant to LHC jet
physics. In particular, we expect these approximations to hold in cases
with properties similar to the toy model presented here - e.g., good
approximation of f by its truncated Taylor series about each point and
approximately Gaussian underlying distributions of Y X x| = .3

Finally, in the rest of this paper, we write ρ y x( | )Y X| to represent the
probability distribution of Y given X=x, and ρ z x( | )Z X| to be the
probability distribution of Z given X=x. A standard fact about the
probability distribution from changing variables is that

ρ z x f z ρ f z x( | ) = ′( ) ( ( ) | ).Z X Y X| | (8)

To ease the notation, we will often use ρ y( )Y and ρ z( )Z interchangeably
with ρ y x( | )Y X| and ρ z x( | )Z X| , respectively, when it is clear (as is usually
the case) that we are conditioning on some true value x.4

3. Results

In the subsequent sections, we will derive properties about the
closure C for three different definitions of the central tendancy: mean
(Section 3.1), mode (Section 3.2), and median (Section 3.3).

3.1. Mean

In the following section only, for brevity, we will let f be fme and C be
Cme.

3.1.1. Closure
We can write the closure Eq. (6) as

3 Note that we do not require that Y X x| = is exactly Gaussian, only that it is
approximately Gaussian, which is true for a wide range of energies and jet reconstruction
algorithms at ATLAS and CMS. In particular, there are non-negligible (but still often
small) asymmetries at low and high ET at ATLAS and CMS [8–10]. In any case, even if
Y X x| = is Gaussian, Z X x| = is in general not Gaussian, for non-linear response
functions; see Appendix A.

4 In practice it is necessary to condition on a small range of X, e.g. X x x∈ [ , (1 + ϵ) ]. If ϵ
is large then there can be complications from the changing of f(x) over the specified range
and from the shape of the prior distribution of X over the specified range. These
challenges can be solved by generating large enough Monte Carlo datasets. We therefore
assume that ϵ⪡1 and consider complications from finite ϵ beyond the scope of this paper.
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