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a b s t r a c t

Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed.
This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman
filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative
circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two
directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full
error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix
of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is
consequently valid for any number of observation. It does, however, assume normally distributed measurement
errors. The calculations are validated on a simulated track sample and show excellent agreement with the
theoretical expectations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The trajectory of a charged particle through a high-energy physics
detector system is governed by the equations of motion, given by
the Lorentz force. In the general case with the presence of an inho-
mogeneous magnetic field, no analytical solutions to these equations
exist, and one has to resort to numerical approaches such as a Runge–
Kutta method of some order. In the very simplest case of a vanishing
magnetic field, the track model is a straight line. Despite the intrinsic
attractiveness of this simple track model, important properties as for
instance the momentum and sign of charge of the particle cannot be
estimated. The only case enabling such properties to be estimated and
at the same time offering an analytical track model is a homogeneous
magnetic field with field lines parallel to the beam direction. In this
situation, the track model is a helix, or, in the bending plane of the
particles, a circle.

Most inner tracking detector systems are therefore embedded in a
nearly homogeneous magnetic field. Although general methods such
as the Kalman filter [1] or global least-squares estimation [2] can
be used in this case, track fitting in the bending plane can also be
performed by simple, fast and non-iterative circle fitting methods such
as the conformal mapping approach [3], the Karimäki method [4] or
the Riemann fit [5]. These non-iterative methods are all based on some
kind of simplifying approximation, which in general makes them less
precise than more rigorous approaches.
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In this paper, we present a thorough study of the precision of
a recently proposed, improved Riemann track fit [6]. As suggested
by Chernov [7], measurements are transformed in order to achieve
invariance under translations and similarity transforms. We show that
the improved Riemann fit is significantly more precise than some of
the most popular, non-iterative approaches and virtually as precise as
the Kalman filter, a global least-squares approach and an iterative, non-
linear method.

In addition to estimating the track parameters, a track fitting al-
gorithm should be able to assess the degree of uncertainty of these
estimates. These uncertainties and the correlations between them are
summarized in the covariance matrix. In [8], the covariance matrix of
the track parameters was based on large-sample (asymptotic) properties
of the sample covariance matrix of the observations. Here we present
the full sequence of error propagation steps from the observations to
the final track parameters. It is valid for any number of observations
under the assumption of normally distributed measurement errors. The
derivation is simpler in the statistically equivalent implementation of
the Riemann fit proposed in [9], where the measurements are projected
to the paraboloid 𝑧 = 𝑥2 + 𝑦2 rather than to the Riemann sphere.

The paper is organized as follows. After a recollection of the basic
concepts of the Riemann track fitting method, the recently introduced
improvements to the original algorithm are reviewed. In a simulation
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study of a generic inner tracking system we show results comparing
the precision of the improved Riemann fit with a set of circular track
fitting methods. The derivation of the error propagation from the
measurements to the estimated circle parameters is then presented and
validated with simulated tracks. The paper is concluded by a summary
and an outlook to further work.

2. The improved track fit on the Riemann paraboloid

The Riemann paraboloid is positioned on top of the (𝑥, 𝑦)-plane with
its global minimum at the origin of the plane. We assume that the
measured points in the (𝑥, 𝑦)-plane are given in Cartesian coordinates,
(𝑢𝑖, 𝑣𝑖), 𝑖 = 1,… , 𝑁 . A covariance matrix 𝑽𝑖 is attached to each point. The
covariance matrix is arbitrary in principle, but is required to be positive
definite in order to avoid problems with rank-deficient matrices during
the error propagation.

There are two important special cases. If the radial error of the point
(𝑢𝑖, 𝑣𝑖) can be neglected, its covariance matrix has the form:
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where 𝜎𝑖 is the standard deviation of the position error in the tangential
direction, and 𝛿𝑖 is positive, but much smaller than 𝜎𝑖, for instance
𝛿𝑖 = 0.01 ⋅ 𝜎𝑖.

If the point (𝑢𝑖, 𝑣𝑖) is a position measurement on a thin plane sensor
with normal unit vector 𝒂𝑖 = (𝑎𝑖,𝑢, 𝑎𝑖,𝑣)𝖳, its covariance matrix has the
form:
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where 𝜎𝑖 is the standard deviation of the position error of the sensor, and
𝛿𝑖 is again positive, but much smaller than 𝜎𝑖, for instance 𝛿𝑖 = 0.01 ⋅ 𝜎𝑖.

The mapping from the (𝑢, 𝑣)-plane to the Riemann paraboloid is given
by:

𝑥𝑖 = 𝑢𝑖
𝑦𝑖 = 𝑣𝑖
𝑧𝑖 = 𝑢2𝑖 + 𝑣

2
𝑖 .

By this mapping, the circle in the plane with the equation

(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2 = 𝜌2

is mapped to the plane in 3D space with the equation

𝑧 − 2𝑥𝑢0 − 2𝑦𝑣0 = 𝜌2 − 𝑢20 − 𝑣
2
0.

A point with position 𝒓 = (𝑥, 𝑦, 𝑧)𝖳 satisfying 𝒏𝖳𝒓+ 𝑐 = 0 lies in the plane
with unit normal vector 𝒏 and signed distance 𝑐 from the origin. The
plane is fitted to the points 𝒓𝑖, 𝑖 = 1,… , 𝑁 , by minimizing the following
objective function:

𝑆 =
𝑁
∑
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2,

where 𝑑𝑖 is the distance from the point 𝒓𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝖳 to the plane and
𝑤𝑖 is its weight. The weights are defined by:

𝑤𝑖 ∝ 1∕𝜎2𝑖 ,
𝑁
∑

𝑖=1
𝑤𝑖 = 1.

The solution to this minimization problem is a plane with a normal
vector 𝒏 that is the unit eigenvector corresponding to the smallest
eigenvalue of the weighted sample covariance matrix 𝑨, defined as:
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where 𝒓0 is the weighted average or center of gravity:
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Given 𝒏, 𝑐 is computed by:

𝑐 = −𝒏𝖳𝒓0.

The parameters 𝒏 and 𝑐 of the plane can then be mapped to a set of
parameters of the corresponding circle in the (𝑢, 𝑣)-plane [9].

We have followed Chernov’s [7] suggestion of centering and scaling
the measurements before mapping to the paraboloid, in order to achieve
invariance of the fit under translations and similarities [6]. Centering is
performed by subtracting the average:

𝑢c,𝑖 = 𝑢𝑖 − 𝑢, 𝑣c,𝑖 = 𝑣𝑖 − 𝑣, 𝑖 = 1,… , 𝑁
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The centered measurements 𝑢c,𝑖 and 𝑣c,𝑖 are arranged in column vectors
𝒖c and 𝒗c. Centered and scaled measurement vectors 𝒖cs and 𝒗cs are then
obtained by:

𝑠 = 𝑏∕
√

(𝒖𝖳c 𝒖c + 𝒗𝖳c 𝒗c)∕𝑁

𝒖cs = 𝑠 ⋅ 𝒖c, 𝒗cs = 𝑠 ⋅ 𝒗c

where 𝑠 is the scaling factor and 𝑏 an arbitrary, preselected constant [6].

3. Simulation study in a generic cylindrical detector

We have simulated a generic type of a cylindrical detector system
embedded in a perfectly homogeneous magnetic field, so that the track
model in the bending plane of the particles is a circle. The simulated
track sample is the same as the one used in [6]: 10 000 tracks coming
from the origin with radii of curvature in a range from about 1.5 m
to about 750 m. This corresponds to arcs between less than 0.1◦ and
about 20◦, following a reasonably flat distribution in this range. There
are between 10 and 12 hits per track, and the single hit resolution
varies between 0.1 and 1.5 mm. The measurement error in the radial
direction is assumed to be negligible. We assume no background and
thereby implicitly a perfect pattern recognition. The simulation does
not include material and detector effects such as multiple scattering,
energy loss and sensor misalignment. Measurements in different layers
are therefore statistically independent.

We have compared the performance of the modified Riemann fit
with a number of other circular track fitting algorithms by considering
the mean-square error (MSE) of the residuals 𝜹 of the track parameters,
i.e. the estimated track parameters minus the true ones. The MSE is
defined by:

𝖬𝖲𝖤[𝜹] = 𝖽𝖾𝗍
(

𝛴[𝜹] + 𝜹̄𝜹̄𝖳
)

,

where 𝛴[𝜹] is the sample covariance matrix and 𝜹̄ is the sample mean
of the residuals. 𝜹̄ is the least-squares estimate of the bias of the track
parameters.

Fig. 1 shows the MSE of the various estimators relative to the
baseline, which is an iterative, non-linear least-squares approach using
the Levenberg–Marquardt algorithm. Firstly, it can be seen that the
modified Riemann fit performs better than the other non-iterative circle
fitting algorithms, including the original Riemann track fit. The im-
provement in general grows with increasing measurement uncertainties.
Secondly, the modified Riemann fit is seen to be virtually as precise as
the Kalman filter, the global linear least-squares estimator and the non-
linear method for the entire range of measurement uncertainties.

A similar plot of the generalized variance, defined as the determinant
of the sample covariance matrix, shows no visible difference from Fig. 1.
From this we conclude that the bias of all estimators is negligible
compared to their spread. For a general error and bias analysis of a
wide range of circle fitting algorithms, see [10].
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