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A B S T R A C T

Modern semiconductor detectors allow for charged particle tracking with ever increasing position resolution.
Due to the reduction of the spatial hit uncertainties, multiple Coulomb scattering in the detector layers becomes
the dominant source for tracking uncertainties. In this case long distance effects can be ignored for the
momentum measurement, and the track fit can consequently be formulated as a sum of independent fits to hit
triplets. In this paper we present an analytical solution for a three-dimensional triplet(s) fit in a homogeneous
magnetic field based on a multiple scattering model. Track fitting of hit triplets is performed using a
linearization ansatz. The momentum resolution is discussed for a typical spectrometer setup. Furthermore
the track fit is compared with other track fits for two different pixel detector geometries, namely the Mu3e
experiment at PSI and a typical high-energy collider experiment. For a large momentum range the triplets fit
provides a significantly better performance than a single helix fit. The triplets fit is fast and can easily be
parallelized, which makes it ideal for the implementation on parallel computing architectures.

1. Motivation

The trajectory of a free charged particle in a homogeneous magnetic
field is described by a helix. The non-linear nature of the helix makes
the reconstruction of the three-dimensional trajectory from tracking
detector hits one of the main computational challenges in particle
physics. To simplify the problem, the reconstruction is often factorized
into a two-dimensional circle fit in the plane transverse to the magnetic
field and a two-dimensional straight line fit in the longitudinal plane.1

A non-iterative solution to this problem was given by Karimäki [1].
This simplified treatment however does not make full use of the
available detector information and ignores correlations between the
two planes, which can be large especially for small helix radii (low
momentum particles) at small (large) polar angles πϑ ≈ 0( ).

A further complication of the track reconstruction problem is the
treatment of multiple Coulomb scattering (MS) in the detector
material, which introduces correlations between the measurement
points. This problem is addressed by Kálmán filters [2,3,4] and broken
line fits [5–7] which both give a correct description of the track
parameter error matrix. The methods however require computationally
expensive matrix inversions and potentially multiple passes.

In modern semiconductor pixel trackers, extremely precise three-

dimensional position information is available and tracking uncertain-
ties are dominated by MS except at the very highest momenta. Usually
most of the material causing the scattering is located in the sensors or
very close to them (services, cooling, mechanics, etc.); therefore, the
scattering planes usually coincide with the detection planes. This is our
motivation for developing a new three-dimensional helix fit which
treats MS in the detector as the only uncertainty. The resulting
algorithm is based on triplets of hits which can be fit in parallel. The
final result is then obtained by combining all triplets. The algorithm is
computationally efficient and well suited for track finding. The first
application of the algorithm is the all-pixel silicon tracker [8] of the
Mu3e experiment [9].

2. Triplet track fit

The basic unit of the track fit is a triplet of hits in successive
detector layers. In the absence of MS and energy losses, the description
of a helix through three points requires eight parameters, namely a
starting point (three parameters), an initial direction (two parameters),
the curvature (one parameter) and the distances to the second and
third points (two parameters). MS in the central plane requires two
additional parameters to describe the change in track direction.2 Three

http://dx.doi.org/10.1016/j.nima.2016.11.012
Received 15 June 2016; Received in revised form 5 November 2016; Accepted 7 November 2016

⁎ Corresponding author.
1 In the right-handed coordinate system we define the B-field orientation along the z-axis; the azimuthal angle φ is defined in the transverse x–y plane and the polar angle ϑ is defined

in the longitudinal z–s plane where s is the track length parameter.
2 Two more parameters, describing a possible position offset at the central plane due to MS inside the material, can be ignored for typical silicon trackers, where the sensor thicknesses

are much smaller than the distances between the detector layers.
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space points, which we assume to be measured without uncertainties,
do however only provide a total of nine coordinates; additional
constraints are thus needed to obtain the track parameters and
scattering angles. These constraints can be obtained from MS theory
since the scattering angles depend statistically on the particle type and
momentum, and the material of the detector.

Starting from a hit triplet, see Fig. 1, a trajectory consisting of two
arcs connecting the three-dimensional space points is constructed. It is
assumed that the middle point x1 lies in a scattering plane which
deflects the particle and thus creates a kink in the trajectory. The
corresponding scattering angles in the transverse and longitudinal
plane are denoted by ΦMS and ΘMS respectively.

We assume that the particle momentum (and thus its three-
dimensional radius R3D) is conserved.3 The scattering angles ΦMS

and ΘMS have a mean of zero and variances σ σ= MSϑ
2 2 and

σ σ= /sin ϑϕ MS
2 2 2 , which can be calculated from MS theory, using e.g.

the Highland approximation [10]. The task is thus to find a unique R3D

which minimizes the scattering angles, explicitly the following χ2

function:
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for R3D. The scattering angle in the transverse plane ΦMS is given by
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where the bending angles Φ1 and Φ2 are the solutions of the
transcendent equations
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These equations have several solutions depending on the number of
half-turns of the track. However, for most practical cases it is sufficient
to consider the first two solutions.

Similarly, the scattering angle in the longitudinal plane is given by

Θ = ϑ − ϑMS 2 1 (5)

where the polar angles ϑ1 and ϑ2 can be calculated from the azimuthal
bending angles using the relations
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Alternatively the relations
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between the azimuthal bending angles and the polar angles can be
exploited.

Eqs. (4) and (6) have no algebraic solutions; they can either be
solved by numerical iteration or by using a linearization around an
approximate solution; the second approach is discussed in the follow-
ing.

2.1. Taylor expansion around the circle solution

The circle solution describes the case of constant curvature in the
plane transverse to the magnetic field r r=1 2 and no scattering in that
plane, Φ = 0MS . This solution exists for any hit triplet and is thus a good
starting point for the linearization. The radius RC of the circle in the
transverse plane going through three points is given by

R d d d
x x x x

=
2 [( − ) × ( − )]

,C
z1 0 2 1

01 12 02

(8)

where dij is the transverse distance between the hits i and j of the
triplet, see Fig. 1.

The bending angles for the circle solution are
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Note that the above equations have in general two solutions (Φ π<iC

and Φ π>iC ) and care is needed to select the physical one, especially for
highly bent tracks. The corresponding three-dimensional radii of the
arcs are calculated as
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In general Θ ≠ 0MS such that the two radii are not identical. Using Eq.
(7), polar angles for the circle solution are obtained:
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Starting from this special circle solution with no scattering in the
transverse plane, we calculate the general solution Φ ≠ 0MS which
minimizes Eq. (1) and for which momentum conservation is fulfilled,
i.e. R3D does not change between the segments. With the positions of
the three hits given, the arc lengths and the polar angles depend only
on the radius, i.e. Φ Φ R= ( )D1,2 1,2 3 and Rϑ = ϑ ( )D1,2 1,2 3 Eqs. (4) and (6).
We can therefore perform a Taylor expansion to first order around the

Fig. 1. Particle trajectory in a homogeneous magnetic field defined by a triplet of hits x0,
x1 and x2, with particle scattering at x1. The top view shows the projection to the plane

transverse to the magnetic field, whereas the bottom view is a projection to the field axis-
arclength (s) plane. r1 and r2 are the transverse track radii before and after the scattering
process, s01 and s12 the corresponding arclengths and Φ1 and Φ2 the bending angles. d01
and d12 denote the transverse distances between x0 and x1, and x1 and x2, respectively.
The azimuthal angles of the corresponding distance vectors are labeled φ01 and φ12, and
ΦMS is the transverse scattering angle. In the longitudinal plane, z01 and z02 denote the
distances between the measurement points along the field axis, ϑ1 and ϑ2 are the polar
angles of the arcs, and ΘMS is the longitudinal scattering angle.

3 Energy loss due to ionization is usually small and can be either neglected or corrected
for.
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