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A B S T R A C T

A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on
optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared
to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method
outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show
the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen
to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases
as particle separation decreases.

1. Introduction

Positron emission particle tracking (PEPT) uses positron emission
tomography (PET) technology to track the motion of an activated
particle in time [1]. Tracer particles are radiolabelled using a positron-
emitting isotope such as 18F, 11C, or 22Na. After emission, the positron
annihilates with a nearby electron, producing coincident, back-to-back,
511 keV gamma rays. By detecting coincident gamma ray pairs, one
can draw a series of lines of response (LORs) between detection pairs.
Each LOR will then pass near the location of the tracer. By examining a
series of collections of LORs, one can recreate the position of the tracer
particle in time.

Since the invention of PEPT, it has been used to study a number of
flow and other industrial systems [2–5]. The majority of the experi-
ments detailed in the literature are single particle tracking experi-
ments. Further experiments have been conducted with multiple
particle tracking, but the majority of these have required a priori
knowledge of the number of particles in the system and their initial
locations [6–8]. It is desired to have a PEPT method that does not
require such a priori knowledge and allows particles to enter and leave
the field of view (FOV) of the system. Such a measurement technique
could be used for Lagrangian flow measurements in which multiple
tracer particles can pass through a test section as part of a recirculating
flow loop. Wiggins et al. [8] developed such a method for multiple
particle tracking, and this has been used to study both vortical flow in a
transparent test section [9] and jet flow induced between baffle plates

[10]. In this paper, a new method for multiple particle tracking is
introduced and compared to the previous.

2. Particle tracking techniques

The most commonly used method for single particle PEPT analysis
is the Birmingham method developed by Parker et al. [1]. In this
method, one collects LORs over a given amount of time and finds the
point in space that minimizes the sum of square distances to the lines.
This point is taken to be the particle location. An adaptation of this has
been created for tracking multiple particles in the case that the particles
are of very different activity [6].

A second method developed by Bickell et al. [7] searches for a
region of the FOV of the detector that has the highest density of LORs
by segmenting the FOV into a three-dimensional grid, counting the
number of LOR crossings at each grid point, finding the maximum grid
element, and applying a Gaussian fit to the data at this point. This
method is then expanded to a method capable of tracking multiple
particles in the case that the number of particles and their initial
positions are known. The methods for multiple particle tracking
presented herein are derivatives of this “line density” method in that
they all begin by dividing the full data into time slices and creating a
grid of LOR density in each slice.
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2.1. G-means clustering approach

Wiggins et al. [8] developed an algorithm for multiple particle
tracking that does not require a priori information of the number of
particles in the system. In this way, it can be used to track particles
entering and leaving the FOV of the detector system as is typical in
recirculating flow experiments. In this method, LOR crossings are
tallied across a superimposed grid, as in the line density method, and
regions of high line density are detected via G-means clustering [11].
This method will henceforth be referred to as the G-means method for
PEPT in this work. A brief review of this method follows.

For the LOR dataset, let Nt(x,y,z) be the be the number of line
crossings at grid point (x,y,z) during time frame t, and let Nt

max be the
maximum value in the LOR grid at this time. Grid elements having
LOR crossing values in the upper rth-percentile of their given frame are
selected for use in particle location. The value r is adjusted based on the
amount of LOR noise in an experiment, as well as the distribution of
activities of particles used in an experiment. At each frame, any point
(x,y,z) having a number of line crossings greater than r×Nt

max is
treated as a number of Nt(x,y,z)−r×Nt

max points in 3D space at
location (x,y,z). G-means, a divisive clustering algorithm based on the
well-established k-means algorithm, is then used to group all the points
in a given frame. In this method, one begins with a k=1 clustering (i.e.
universal centroid identification) of the set. This algorithm then
subsequently splits and re-clusters any clusters that are not normally
distributed along their main principal components. The process
terminates when all clusters are Gaussian, as determined by a 1-D
Anderson-Darling test [12]. The centroids of the detected clusters are
then taken to be the particle locations, and the standard deviations of
the centroids are taken to be the uncertainties.

Particle locations in each frame are then linked into trajectories
based on a nearest-neighbors approach. A modified Kuhn-Munkres
algorithm [13,14] is used to find the inter-frame linking which
minimizes the sum of particle displacements. The primary input
parameters to this linking method are vmax, a maximum velocity
limiting the allowed between frame displacement for particle links, and
R, a linking range indicating over how many frames a particle will look
for a candidate match, similar to that found in [15]. For further
discussion of both the identification and linking phases of this
algorithm, see [8].

It is noted that in this G-means method, results depend on the
selection of the Anderson-Darling critical value, Acrit, used when
determining of number of clusters present, especially in the case of
multiple particle detection. The standard values of Acrit, derived by
Stephens [16], are for continuous data and have been found unsuitable
for the discrete data created from the LOR crossing grid. It has been
found in testing that several values of Acrit must often be tried before
the resulting number of clusters found by G-means matches the true
number of particles. It is desired that a multiple particle detection
method be devised that does not depend on a parameter which must be
adjusted without full understanding for best results.

2.2. Feature point identification method

When considering the aforementioned grid of LOR crossings, one
can view each element of the grid as a 3D counterpart to the pixel called
a “voxel”, with the number of line crossings being analogous to a
greyscale value. As such, traditional optical particle tracking methods
may be adapted for use in PEPT. A new approach to multiple PEPT
analysis is presented, based on the feature point identification techni-
ques of Crocker and Grier [17] and Sbalzarini and Koumoutsakos [15].
For this reason, this method will be referred to as the feature point
identification (FPI) method. This method is carried out in four stages:
smoothing, position estimation, position refinement, and trajectory
linking.

As with previous methods, this method begins by collecting LORs

for a given amount of time and counting line crossings across a grid
superimposed on the system's FOV. Continuing the previous notation,
let Nt(x,y,z) be the be the number of line crossings at position (x,y,z)
during time frame t. The grid is first smoothed via a box-car average
over a cubic region of width 2f+1:
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where f is taken to be a smoothing size. In most studies, f is set to 1
(minimal smoothing) or 0 (no smoothing). In the above operation, the
outer f elements are neglected in each dimension. Crocker and Grier
[17] and Sbalzarini and Koumoutsakos [15] convolve each frame with a
Gaussian surface of rotation of half-width 1 pixel to reduce camera
pixelation noise, and use convolution with a larger box-car kernel as a
means to estimate background noise. An analog was attempted for this
study; however, no significant benefit was seen, and this operation only
added to computational costs. This more complex smoothing step will
be omitted until the noise associated with the grid-based discretization
of LORs is further understood.

Next, particle positions are estimated by finding local maxima in
the smoothed grid, Nt′. Local maxima are taken to be grid elements
having LOR crossing values in the upper rth-percentile of their given
frame and having values greater than any of their neighbors within a
cube of width 2w+1. As in the G-means approach, the value r is
adjusted based on the amount of LOR noise in an experiment, as well
as the distribution of activities of particles used in an experiment.

The parameter w serves as an apparent particle radius where the
virtual particle can be viewed as a cloud of high LOR density. However,
w limits the between particle separation that can be resolved in a given
frame to w times the side length of the grid elements used. Below this
separation, only the particle that appears “brightest” in LOR crossing
space, i.e. the one corresponding to the highest LOR crossing peak, will
be detected, and any others will only serve to bias this measured
position toward the centroid of the particles involved. Thus, in the case
of two particles approaching closely, it is likely that the trajectory of the
higher activity particle will be continued while there will be a break in
the measured history of the other. As such,w can be adjusted in a given
experiment according to expected particle density so that it is greater
than the expected inter-particle separation. Furthermore, in searching
for local maxima, the outer w elements are neglected in each dimen-
sion. This prevents bias along the edges of the scanner but restricts the
useable FOV of the scanner based on the selection of w.

Ties in the local maxima search are handled on a “first come, first
serve” basis. If two grid elements of identical smoothed LOR crossing
value are identified as local maxima and are found in the same cubic
region of side length 2w+1, the first one detected by the algorithm will
be accepted as a particle position estimate, and the second will be
rejected. It is expected that any bias introduced here is reduced or
eliminated during the particle position refinement stage of the algo-
rithm. Furthermore, the frequency of such ties is reduced by the use of
the aforementioned smoothing filter.

After particle positions are estimated, refinements are made
according to a centroid calculation over a cubic region of side length
2w+1 centered at each estimate. Given an estimate position of x=(x, y,
z)T, a final position, x’=(x’, y’, z’)T is calculated by:
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with normalization:
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Individual particle positions are linked into trajectories via the
aforementioned nearest-neighbors method found in [8]. A four-frame
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