
Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Multipole-field measurements by sampling oblong apertures of accelerator
magnets

Oliver Köstera,b,⁎, Stephan Russenschucka, Oliver Boine-Frankenheimb

a CERN, 1211 Geneva 24, Switzerland
b Technische Universität Darmstadt, Schlossgartenstraße 8, 64289 Darmstadt, Germany

A R T I C L E I N F O

Keywords:
Magnetic Measurements
Rotating Search Coil
Multipoles
Field Harmonics
Feed-Down
Least Square
Error Analysis

A B S T R A C T

The rotating search coil is a commonly used tool to measure magnetic fields of accelerator magnets. The coil
intercepts the magnetic flux at a radius given by the dimensions of the measurement shaft that comprises a set
of search coils for the analog bucking of the main signal from the dipole field component. For magnets of a
rectangular aperture with large aspect ratio ( > 3: 1) the cylindrical domain covers only a portion of the magnet
bore. As the field representation is dominated by measurement errors outside that cylindrical domain, a
sampling technique is required. The method presented in this paper trades the precision in the measurements
against the precision in the shaft positioning and arrives at a multipole representation that covers the entire
bore of the magnet.

1. Introduction

Magnetic field measurements are of fundamental importance in
every accelerator project. Knowing the generated magnetic field allows
to verify the magnet design (modeling errors), the magnet manufacture
(magnet to magnet reproducibility) and the deviations from the desired
field (input for beam physics simulations and machine operation).
Furthermore, magnetic measurements are essential to study dynamic
effects, such as combinations of iron hysteresis and 3D eddy-currents,
which are still a challenge in magnetic field simulation.

The magnetic field of accelerator magnets is commonly described
by its main field component and the higher-order field errors. In a
mathematical sense, this representation is an analytic function with so-
called multipole coefficients [1]. These coefficients are determined by a
Fourier series expansion of one integrated field component along the
design trajectory. This representation is therefore strictly two-dimen-
sional as the magnetic field is integrated along the search coil that
covers the magnet extremities and the fringe-field region.

Being the most precise tool to measure the field errors, the rotating
search coil [3] nevertheless lacks in versatility, because for a highest
precision, the shaft must be as large as possible. This is a problem for
magnets with rectangular apertures of large aspect ratio. For rectan-
gular apertures large, stationary fluxmeters are often used for fast
ramped magnets. For static operation a combination of field measure-
ments at different transverse positions has found attention in the
measurement community.

In synchrotrons the large aspect ratio aperture is usually filled by
the non-symmetric transverse beam profile which is generated by the
multi-turn injection process in the horizontal plane [2]. The field
representation therefore has to cover the full domain.

A field representation in elliptical coordinates is an approach that
requires the field distribution on an elliptical boundary from which
elliptical multipole coefficients can be extracted [4]. However, the noise
spectrum on the measurement is not respected because all multipole
orders must be used to express the magnetic field distribution [5].
Experience has shown that the main field component is about two
orders of magnitude less precise [6] than the higher-order multipoles.

The novelty of the proposed method lies in the exclusive use of the
higher-order multipoles, which allows not only to preserve but even to
increase the precision of the combined result with respect to the single
measurement. The computed results are valid in the entire sampled
domain.

The method was first presented for magnet with round apertures in
[7]. In this paper, we present the combination of three rotating-coil
measurements on the mid-plane of a normal-conducting dipole
magnet.

2. Fundamentals

Consider three multipole measurements acquired by a rotating
search coil, as shown in (Fig. 1). Each measurement yields a set of
Fourier coefficients/multipoles, which completely determine the field
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inside the coil radius Rc. Outside that radius, the measurement errors
strongly affect the accuracy of the field representation. In order to
obtain a single field representation for the entire domain (aperture of
the magnet), the three measurements must be combined in a post-
processing step.

2.1. Magnetic field representation

The magnetic field representation reads in complex notation [1]
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where z x iy= + and the complex multipoles are given by
C B iA= +n n n. The radius Rc is the search-coil radius or may be
regarded as the reference radius to which the multipoles are scaled.
The scaling law C r C R r R( ) = ( )( / )n n

n
0 c 0 c

−1 allows to express the multi-
poles at a different radius r0. The reference radius r0 is often noted as
R0 or Rref ; in this work the reference radius equals the coil radius and
will consequently be denoted Rc. In measurement practice the field
harmonics are determined by a rotating coil measurement, which
yields the radial component of the magnetic field on a circle of the
radius of the coil. Owing to the regularity of the magnetic field in an
aperture free of magnetic material and current sources, the governing
Laplace equation and the eigensolutions of a boundary value problem,
yield a field representation inside the measurement domain. In other
words, the field harmonics Cn can be determined from the boundary
data established by the search-coil measurement.

2.2. Analytic continuation

Taking the complex representation of the magnetic field in Eq. (1),
we can calculate the effect on the multipole-field errors by translating
the reference frame into the positions of the measurement coil,
z z z z z→ ′, ′≔ − i. As this displacement stays within the bore of the
magnet, free of magnetic material and current sources, the path
between z and z′ remains zero-homotopic as required by the method
of analytic continuation. For the magnetic flux density being invariant
with respect to the frame change we obtain
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zi are the position of the displaced measurements. Using the binomial
series expansion for the term z z( ′ + )i n−1, the left-hand side of Eq. (2)
can be transformed as follows:
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Rearranging the double sum [8] according to
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Comparing the coefficients and using the identity ( ) = ( )a
b

a
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results in
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For measurement practice the series is truncated at an index k=K,
usually at K=15 because of the limited signal-to-noise ratio:
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Every multipole measured with the displaced coil is coupled to every
higher-order multipole in the reference frame. This effect is know as
feed-down in the magnet-design community.

2.3. Synthesis of the field measurements

A synthesis of multiple magnetic measurements, presented in [7],
relies on the link between the multipoles C′n at the displaced positions
and the multipoles Cn at the center. The feed-down formula from Eq.
(6) is noted for the multipole orders n N= 2, 3, 4,…, for all displaced
positions zi. The multipoles to compute are the Cn and are the
unknowns in an over-determined equation system. The equation
system for the three measurements can be written as:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

C z C z C z z
R

C z K
K

z
R

C z C z C z z
R

C z K
K

z
R

C z C z

C z C z

C z C z C z z
R

C z K
K

z
R

C z C z C z z
R

C z K
K

z
R

′ ( ) = ( ) 1
0

+ ( ) 2
1

+⋯+ ( ) − 1
− 2

′ ( ) = ( ) 2
0

+ ( ) 3
1

+⋯+ ( ) − 1
− 3

⋮
′ ( ) = ( )

′ ( ) = ( )

⋮

′ ( ) = ( ) 1
0

+ ( ) 2
1

+⋯+ ( ) − 1
− 2

′ ( ) = ( ) 2
0

+ ( ) 3
1

+⋯+ ( ) − 1
− 3

⋮

K

K

K

K

K

K

K

K

2 1 2 0 3 0
1

c

1

0
1

c

−2

3 1 3 0 4 0
1

c

1

0
1

c

−3

2 0 2 0

3 0 3 0

2 2 2 0 3 0
2

c

1

0
2

c

−2

3 2 3 0 4 0
2

c

1

0
2

c

−3

The vertical dots indicate equations up to C′N , where N is the highest
multipole order extracted from each of the measurements. The central
measurement at z0 defines the position of the reference frame in which
the reconstructed multipoles are computed. Here, the feed-down
formula does not need to be applied so that the measured and
reconstructed multipoles are equal and the equations become trivial.

2.3.1. Matrix notation
The equation system can be written in matrix notation as

C M C{ ′} = [ ]{ }, (7)

where the elements in M[ ] ∈ N K3( −1)×( −1) are functions of the search
coil radii, the shaft positions, and the binomial coefficients stemming
from the analytic continuation. The vector C{ ′} ∈ N3( −1) contains the
measured field harmonics; C{ } ∈ K−1 contains the multipoles in the
reference frame, which are the unknown values to be computed. The
column vectors are given by

C C z C z C z C z C z{ ′} = ( ′ ( ), ′ ( ),…, ′ ( ), ′ ( ),…, ′ ( ), …) ,N N2 1 3 1 1 2 0 0
T (8)

C C C C{ } = ( , ,…, ) .2 3 K
T (9)

The block matrix M[ ] is composed of three inner matrices W[ ]i , one for

Fig. 1. Three rotating coil measurements at the positions zi.
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