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A B S T R A C T

In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates
the frequencies of the first four modes of the cavity as well as the RT

Q
for the deflecting mode. Equivalent circuit

models of RF cavities give intuition and understanding about how the cavity operates and what changes can be
made to modify the frequency, without the need for RF simulations, which can be time-consuming. We
parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are
derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate
the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-
marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the
equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the
deflecting frequency. RT

Q
differs between the model and CST by 37% for the CEBAF separator and 25% for the

HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The
model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity
and to suggest design methodologies to optimise the cavity geometries.

1. Introduction

RF cavities operating in a dipole mode have a variety of applications
in modern particle accelerators and colliders. Common uses of RF
deflecting cavities are for longitudinal beam diagnostics [1], emittance
exchangers [2], X-ray pulse compression [3] and crab-crossing of
bunches in colliders [4,5]. In this report we shall focus on developing
an equivalent circuit model for a four rod deflecting cavity (4RDC)
which operates in a TEM-110 like mode. The model is compared to the
design frequencies of the CEBAF RF separator cavity [6] and the
proposed HL-LHC 4-rod crab cavity [7,8] which both show a good
agreement between the equivalent circuit model and simulation results.
Other deflecting cavity designs exist, such as the double quarter-wave
crab cavity [9] and the RF dipole crab cavity [10]; which are also
proposed for HL-LHC.

A 4RDC is a deflecting cavity containing four rods arranged in a
plane, consisting of two parallel sections of two longitudinally opposing
rods, as shown in Fig. 1. The four rods act as separate coupled quarter-
wave resonators, which allows the cavity to resonate in the desired
deflecting mode. However as there are four coupled resonators, there
are four eigenmodes of the system due to the different permutations of
the polarity of the charge on each rod. The eigenmodes are two dipole
modes where transversely opposite rods have opposite charges giving a
transverse field, and two monopole modes where the transversely

opposing rods have the same polarity giving a longitudinal field.
Equivalent circuit models of RF cavities are a useful means of

estimating cavity parameters such as the resonant frequency and R Q/
and give intuition and understanding about how the cavity operates
and what changes can be made to modify the frequency, without the
need for RF simulations which can be time-consuming. Existing
equivalent circuit models for 4RDCs, such as the model outlined in
[11], are based on simplifications such as neglecting the capacitance in
the gap between longitudinally opposed rods and ignoring the effect of
the outer can of the cavity. Ignoring the end capacitance yields the
same resonant frequency for all four eigenmodes, which is incorrect.
Having the lower order mode (LOM) and deflecting dipole mode at the
same frequency would make it difficult to damp the unwanted
monopole mode hence it is beneficial to separate the two modes in
frequency. An improved equivalent circuit model would provide an
understanding of how best to separate these modes.

In this report, we present an improved equivalent circuit model
whereby we derive equations for the line impedance of the rods for the
deflecting mode as well as the LOM. We then provide a model for the
capacitance between longitudinally opposed rods, starting with a
physical model and then add some empirical correction terms to create
a model which fits the observed results from CST simulations [12]. We
then use the line impedance and end capacitance models to determine
the resonant frequencies of a 4RDC for both the LOM and deflecting
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mode. We then use this equivalent circuit model to develop a model for
the R

Q
T , also known as the geometric transverse shunt impedance, for

the deflecting mode of the cavity. Finally, we discuss how to use the
equivalent circuit model to optimise the cavity design parameters.

2. Equivalent circuit model

From the cross-section of a generic 4RDC (Fig. 1), we may consider
the cavity as consisting of three distinct regions; two transmission lines
separated by a capacitive region. The geometry of the cavity has been
parameterised in terms of the transverse rod separation, S2 , the
longitudinal rod separation, g2 , the rod to wall separation, W, the
rod length, Lrod and the rod radius, R.

We assume that the transmission line has a characteristic impe-
dance, Z0, and that this is terminated through the capacitive region
with a load impedance, Z = −L

j
ωCend

, where Cend is the capacitance

between the end of the rod and the symmetry plane between long-
itudinally opposing rods (Fig. 3), which is a ground plane. This can be
expressed by the equivalent circuit shown in Fig. 2 where the input
impedance, Zin, can be expressed as [13]
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At the resonant frequency, the input impedance tends to zero,
because the end is shorted, therefore from Eq. (1), the resonant
frequency can be determined by solving [14]
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Hence if we can determine the characteristic line impedance of the
relevant mode, Z0 and the capacitance between longitudinally opposing
rods, Cend, we can calculate the resonant frequencies of the deflecting
cavity. Conversely, if we neglect the capacitance between longitudinally
opposed rods, as in other equivalent circuit models of 4RDCs, from Eq.
(2) we obtain L =rod

λ
4 and the frequency of all four eigenmodes

becomes c
L4 rod

.

2.1. Transmission line characteristic line impedance

The configuration of rod potentials differs between the deflecting
mode and the LOM for the deflecting cavity (Fig. 3). The potential of
the outer can and the symmetry planes can be considered as ground. In
the LOM, the capacitances of the transversely opposing rods can be
considered in parallel, thus the capacitance of the transmission line can
be defined as C C= 2line

LOM
W . For the deflecting mode, the capacitances of

the transversely opposing rods can be considered as being in series
because the rods have opposite charges; hence the capacitance of the
transmission line can be defined as C C C= ( + )line

dipole
W S

1
2 .

In Fig. 4, one can see the other monopole and dipole modes. As the
longitudinally opposing rods have the same potential, there is no end
capacitance in this system, however there is a small capacitance to
ground between the end of the rod and the wall and transversely
opposing rod (only for the dipole mode). However this capacitance is
small compared to the line impedance of the rod and therefore the
difference in frequency between the two eigenmodes is small. If g tends
to zero, the frequency of both eigenmodes tends to c

L4 rod
. Furthermore

these eigenmodes have very low shunt impedance compared to the
other modes and can therefore be neglected.

In this paper, we consider the case where the outer can of the cavity
has a rectangular cross section, such that the walls parallel to the
deflecting plane are far away from the rods. This allows us to neglect
image charges out of the deflecting plane as these can significantly alter
the line impedance of the rods, particularly for the LOM. Image charges
out of the deflecting plane can be extremely difficult to model as the
distance to image charges tend to be over a continuous range rather
than at discrete values, hence the perturbation to the line impedance
due to these image charges cannot be expressed as a series or product
expansion.

In order to determine the line impedance of the rods, we shall
consider each rod as a uniform line charge, where the total charge of
each rod is q λ L= ±rod rod rod . The potential at a transverse distance, x,
from a uniform line charge of length Lrod can be expressed as
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Fig. 1. A cross-sectional diagram of a generic four rod deflecting cavity.

Fig. 2. An equivalent circuit for a rod in a four rod deflecting cavity described as a
transmission line terminated by a capacitance.

Fig. 3. Diagrams illustrating the rod potential configurations for the LOM and deflecting
modes respectively. (a) Monopole (LOM) (b) Dipole.

Fig. 4. Diagrams illustrating the rod potential configurations for the other monopole and
dipole eigenmodes. (a) Monopole (b) Dipole.
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