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A B S T R A C T

A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-
continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows
both ease of development as well higher performance similar to a compiled language like C. The beam dynamics
calculations carried out by the code are compared with analytical results and with other well developed codes
like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of
intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so
that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN
and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low
Energy Beam Transport (LEBT) using PARTDYN have been presented.

1. Introduction

An Indian spallation neutron source (ISNS) has been proposed at
RRCAT, Indore. ISNS consists of 1 GeV H- injector linac which injects
a high current beam into an accumulator ring. As a part of the ongoing
project, a PIC code for beam PARTicle DYNamics in Linear Accelerator
PARTDYN has been developed to study the beam dynamics of the
space charge dominated beam in the Low Energy Beam Transport
(LEBT) and Medium Energy Beam Transport (MEBT) sections of the
linac. PARTDYN can be used to simulate the z-continuous (2D) beam
and bunched (3D) beam in the accelerator transport sections consisting
of axially symmetric accelerating cavities, and magnetic focusing
elements like quadrupoles, solenoids etc.

PIC is a standard technique for the transport of space charge
dominated beam. The details of the PIC method can be found in
references [1–3]. Apart from the space charge solver using the PIC
technique, PARTDYN contains a particle distribution generation and
particle tracking algorithm. PARTDYN is developed in MATLAB.
MATLAB is a good platform for the fast development of the code but
is too slow for non-vectored operations like the sequential ‘for’ loops
which are often encountered in the code. This speed bottleneck can be
removed by using the MEX files which are a way to call the C/
FORTRAN routines directly from MATLAB.

In this paper we describe the algorithms used in the development of
PARTDYN. We also discuss the validation of PARTDYN calculations

with analytical results and compare the performance and the deviations
of the code with other well developed codes like PARMELA [4] and
BEAMPATH [3]. In future we would like to incorporate collision of
beam ions with neutral gas using Monte Carlo technique in the 2D code
for the study of space charge compensation. The space charge
compensation method is used in the Low energy beam transport
(LEBT) of the linac to reduce space charge induced emittance growth.

2. Physical modeling and equations of motion

The z-continuous beam is represented as a slice of macro-particles
in the x-y plane on which the 2D space charge grid is superimposed.
The boundaries of the grid correspond to the aperture of the transport
channel. The bunched beam is represented by the collection of macro-
particles on a three dimensional spatial grid. In the transverse direction
the grid boundary is decided by the aperture and in longitudinal
direction the grid extends over the bunch period=βλ. Where β is the
beam's average relativistic parameter and λ is the free space wavelength
of rf field. A macro-particle represents a group of particles in the real
beam with same q/m ratio. The computation grid moves along with the
beam centroid.

Initially the phase space is filled with macro-particles according to
the type of distribution chosen. The particle trajectories are then
integrated in the fields consisting of external electromagnetic fields
and self-space charge fields. The space charge field is calculated at each
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integration step using the Poisson solver and the macro-particles are
thus transported self consistently over the length of transport section.
The macro-particle is lost if it touches the boundaries of the aperture. If
the particle leaves the grid longitudinally, its contribution to the space
charge field is neglected. But its trajectory is computed with a space
charge kick of a point charge at the beam centroid.

For the relativistic generalization u=γv is used instead of v. the
equations of motion are given by:
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Where,q is charge and m is the rest mass of the particle, x→ and u→ refer
to x,y and z components of position and velocity. The electric and

magnetic fields in Eq. (1) are a combination of external fields E
⎯→⎯

ext and

B
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ext , and space charge fields of the beam E
⎯→⎯

sc. The integration is
performed with a fixed time step Δt.

3. Initial loading of particles

For linear focusing and linear space charge density the courant-
Snider(C-S) invariant of motion are given by [5]:
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where, x x y y, ′, , ′ are the phase space coordinates of the particle and
α α β β, , ,x y x y are the TWISS parameters of the beam. Ax

2,Ay
2 define the

areas of the phase space ellipses in x and y plane and thus are related to
the beam emittances εx and εy. A distribution that is specified as a
function of Courant-Snyder (C-S) invariants, is in equilibrium through-
out the beam transport. But except the Kapchinskij-Vladimirskij (KV),
any other function of C-S invariant produces a non-uniform space
charge density and hence is not self-consistent. Nonetheless such
distributions have elliptical symmetry and consequently are employed
in linear focusing channels with longitudinal variations in focusing
strengths. Consider the parameter F defined as a function of C-S
invariants as:

F A νA= +x y
2 2

(3)

where ν = ε
ε
x
y

is the ratio of beam emittances.F is related to the

emittance of the beam,F0 being the total emittance of the beam. The
different distributions defined as a function of parameter F are shown
in Table 1.

Methods to generate such distributions can be found in references
[3,6]. In this code we have used the ‘Inverse function’ method of [3] to
generate the distributions. The same technique is used for the genera-
tion of bunched beam, wherein we make use of the above process for

the transverse phase space and a separate C-S invariant parameter for
the longitudinal space. It is known that the density projection of any
distribution of C-S invariant in 6D phase space cannot produce a
uniform ellipsoid bunch [6]. Hence unlike K-V, there is no distribution
that is self-consistent with space charge in 3D real space. In 3D, a
distribution which produces a uniform ellipsoid bunch and whose rms
parameters can be readily calculated is the so called ‘TRACE-3D’
distribution [7]. This distribution is uniform in any of the 3 phase
space coordinate (x,y,z), (x′,y′,z′), (x, y,z′) etc. It should be noted that
TRACE-3D is not an equilibrium distribution even without space
charge since it is not a function of C-S invariant or any other invariant
of motion. Fig. 1 shows the phase space projections of the different
distributions listed in Table 1. The different colored contours represent
the varying densities of the distribution. The red color represents the
highest density and blue the lowest. The real space projections of 2D
Gaussian and TRACE-3D bunched beam are shown in Fig. 2.

4. Field solver

The space charge field of the beam is calculated by solving the
Poisson's equation:

ϕ ρ
ε

∇ = −2

0 (4)

where ϕ is the space charge potential and ρ is the space charge
density of the beam. The computational space is first discretized using a
rectangular/cylindrical grid in two and three dimensions for the
continuous and bunched beams respectively. The space charge of
macro-particles is distributed among the grid nodes using the ‘Area
Weighing Method’ [1]. For the rectangular 2D case the charge of the
nth particle is deposited on the neighboring 4 nodes as:
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where, xi, yi are the coordinates of the (i,j)th node from the origin, and
xn,yn are the coordinates of the nth particle. hx,hy are mesh sizes. ρc is
the charge density per cell related to current I by:

ρ I
β cNh h

=c
x y (6)

Similar equations are used for the charge deposition of the particle
on the neighboring 8 nodes of the 3D grid. Since the bunch has
relativistic velocity in z direction, before the Poisson equation is solved,
the grid is transformed in the bunch center of mass frame. The distance
of the grid nodes in longitudinal direction is multiplied by the Lorentz
factor γ, whereas the transverse grid spacing remains the same.

4.1. Poisson solver

A FFT based Green's function method is mostly used to solve the
Poisson equation subject to open boundaries. This is true for the case in
which the pipe radius is much larger than the beam transverse size.
When the beam size is not too small, the effects of the conducting beam
pipe have to be considered. For simple regular shaped boundary
conditions like rectangular/cylindrical pipe, spectral methods utilizing
Fourier expansion of the electrostatic potential may be used.

For the z-uniform beam, Poisson equation in 2D Cartesian co-
ordinates is given by:
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Table 1
Definition of different phase space distributions.

Type of distribution Definition f (r)

K V δ F F( − )v
π F2 0

0

Waterbag ν
π F

2
2

0
2

Parabolic ⎛
⎝⎜

⎞
⎠⎟1 −ν

π F
F
F

6
2

0
2 0

Gaussian ⎛
⎝⎜

⎞
⎠⎟exp −ν

π F
F
F2

0
2 0
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