Strong isospin breaking at production of light scalars

N.N. Achasov and G.N. Shestakov
Laboratory of Theoretical Physics, S.L. Sobolev Institute for Mathematics, 630090 Novosibirsk, Russia

Abstract

It is discussed breaking the isotopic symmetry as the tool of studying the production and nature of light scalar mesons.

Keywords: Light scalar mesons, isospin breaking decays, $a_{0}(980)-f_{0}(980)$ mixing, $K \bar{K}$ loop mechanism

1. Introduction

The thirty seven years ago we discovered theoretically a threshold phenomenon known as the mixing of $a_{0}^{0}(980)$ and $f_{0}(980)$ resonances that breaks the isotopic invariance considerably, since the effec$\mathrm{t} \sim \sqrt{2\left(M_{K^{0}}-M_{K^{+}}\right) / M_{K^{0}}} \approx 0,13$ in the module of the amplitude [1]; see also Ref. [2]. This effect appears as the narrow, $2\left(M_{K^{0}}-M_{K^{+}}\right) \approx 8 \mathrm{MeV}$, resonant structure between the $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ thresholds, $a_{0}^{0}(980) \rightarrow K \bar{K} \rightarrow f_{0}(980)$ and vice versa. Since that time many new proposals were appeared, concerning both the searching it and estimating the effects related with this phenomenon [3-29].

Nowadays, this phenomenon has been discovered experimentally and studied with the help of detectors VES in Protvino [30, 31] and BESIII in Beijing [32, 33, 34] in the processes
(a) $\pi^{-} N \rightarrow \pi^{-} f_{1}(1285) N \rightarrow \pi^{-} f_{0}(980) \pi^{0} N \rightarrow$ $\rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} N \quad[30,31]$,
(b) J/ $\psi \rightarrow \phi f_{0}(980) \rightarrow \phi a_{0}(980) \rightarrow \phi \eta \pi^{0}$ [32],
(c) $\chi_{c 1} \rightarrow a_{0}(980) \pi^{0} \rightarrow f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ [32],
(d) $J / \psi \rightarrow \gamma \eta(1405) \rightarrow \gamma f_{0}(980) \pi^{0} \rightarrow \gamma 3 \pi$ [33],
(e) $J / \psi \rightarrow \phi f_{0}(980) \pi^{0} \rightarrow \phi 3 \pi$ [34],
(f) $J / \psi \rightarrow \phi f_{1}(1285) \rightarrow \phi f_{0}(980) \pi^{0} \rightarrow \phi 3 \pi$ [34]

It has become clear $[35,36]$ that the similar isospin
breaking effect can appear not only due to the $a_{0}^{0}(980)-$ $f_{0}(980)$ mixing, but also for any mechanism of the production of the $K \bar{K}$ pairs in the S wave, $X \rightarrow K \bar{K} \rightarrow$ $f_{0}(980) / a_{0}^{0}(980) .{ }^{1}$ Thus a new tool to study the production mechanism and nature of light scalars is emerged.

2. The $a_{0}^{0}(980)-f_{0}(980)$ mixing

The main contribution to the $a_{0}^{0}(980)-f_{0}(980)$ mixing amplitude, caused by the diagrams shown in Fig. 1, has the form

Figure 1: The $K \bar{K}$ loop mechanism of the $a_{0}^{0}(980)-f_{0}(980)$ mixing.

$$
\begin{aligned}
& \Pi_{a_{0}^{0} f_{0}}(m)=\frac{g_{a_{0}^{0} K^{+} K^{-}}}{16 \pi} g_{f_{0} K^{+} K^{-}} \\
& 1 \pi
\end{aligned} i\left(\rho_{K^{+} K^{-}}(m) ~=\rho_{K^{0} \bar{K}^{0}}(m)\right)-\frac{\rho_{K^{+} K^{-}}(m)}{\pi} \ln \frac{1+\rho_{K^{+} K^{-}}(m)}{1-\rho_{K^{+} K^{-}}(m)}
$$

[^0]\[

$$
\begin{aligned}
& \left.+\frac{\rho_{K^{0} \bar{K}^{0}}(m)}{\pi} \ln \frac{1+\rho_{K^{0} \bar{K}^{0}}(m)}{1-\rho_{K^{0} \bar{K}^{0}}(m)}\right] \\
& \approx \frac{g_{a_{0}^{0} K^{+} K^{-}} g_{f_{0} K^{+} K^{-}}}{16 \pi} i\left(\rho_{K^{+} K^{-}}(m)-\rho_{K^{0} \bar{K}^{0}}(m)\right),
\end{aligned}
$$
\]

where m (invariant virtual mass of scalar resonances) $\geq 2 m_{K^{0}}$ and $\rho_{K \bar{K}}(m)=\sqrt{1-4 m_{K}^{2} / m^{2}}$; in the region $0 \leq$ $m \leq 2 m_{K}, \rho_{K \bar{K}}(m)$ should be replaced by $i\left|\rho_{K \bar{K}}(m)\right|$. The modulus and the phase of $\Pi_{a_{0}^{0} f_{0}}(m)$ are shown in Fig. 2. In the region between the $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ thresholds,

Figure 2: (a) An example of the modulus of the $a_{0}^{0}(980)-f_{0}(980)$ mixing amplitude. (b) The phase of the $a_{0}^{0}(980)-f_{0}(980)$ mixing amplitude.
which is the 8 MeV wide,

$$
\begin{aligned}
& \left|\Pi_{a_{0}^{0} f_{0}}(m)\right| \approx \frac{\left|g_{a_{0}^{0} K^{+} K^{-}} g_{f_{0} K^{+} K^{-}}\right|}{16 \pi} \sqrt{\frac{2\left(m_{K^{0}}-m_{K^{+}}\right)}{m_{K^{0}}}} \\
& \approx 0.127 \frac{\left|g_{a_{0} K^{+} K^{-}} g_{f_{0} K^{+} K^{-}}\right|}{16 \pi} \simeq 0.03 \mathrm{GeV}^{2} \\
& \approx m_{K} \sqrt{m_{K^{0}}^{2}-m_{K^{+}}^{2}} \approx m_{K}^{3 / 2} \sqrt{m_{d}-m_{u}}
\end{aligned}
$$

Note that $\left|\Pi_{\rho^{0} \omega}\right| \approx\left|\Pi_{\pi^{0} \eta}\right| \approx 0.003 \mathrm{GeV}^{2} \approx\left(m_{d}-m_{u}\right) \times$ 1 GeV .

The branching ratios of the isospin-breaking decays $f_{0}(980) \rightarrow \eta \pi^{0}$ and $a_{0}^{0}(980) \rightarrow \pi^{+} \pi^{-}$, caused by the $a_{0}^{0}(980)-f_{0}(980)$ mixing, are [36]

$$
\begin{gathered}
B R\left(f_{0}(980) \rightarrow K \bar{K} \rightarrow a_{0}^{0}(980) \rightarrow \eta \pi^{0}\right) \\
=\int\left|\frac{\Pi_{a_{0}^{0} f_{0}}(m)}{D_{a_{0}^{0}}(m) D_{f_{0}}(m)-\Pi_{a_{0}^{0} f_{0}}^{2}(m)}\right|^{2} \\
\times \frac{2 m^{2} \Gamma_{a_{0}^{0} \rightarrow \eta \pi^{0}}(m)}{\pi} d m \approx 0.3 \% \\
B R\left(a_{0}^{0}(980) \rightarrow K \bar{K} \rightarrow f_{0}(980) \rightarrow \pi \pi\right) \\
=\int\left|\frac{\Pi_{a_{0}^{0} f_{0}}(m)}{D_{a_{0}^{0}}(m) D_{f_{0}}(m)-\Pi_{a_{0}^{0} f_{0}}^{2}(m)}\right|^{2}
\end{gathered}
$$

$$
\times \frac{2 m^{2} \Gamma_{f_{0} \rightarrow \pi \pi}(m)}{\pi} d m \approx 0.2 \%,
$$

where $D_{a_{0}^{0}}(m)$ and $D_{f_{0}}(m)$ are the propagators of the $a_{0}^{0}(980)$ and $f_{0}(980)$ resonances, respectively. Figure 3

Figure 3: Mass spectra in the isospin-violating decays $f_{0}(980) \rightarrow \eta \pi^{0}$ and $a_{0}^{0}(980) \rightarrow \pi^{+} \pi^{-}$, caused by the $a_{0}^{0}(980)-f_{0}(980)$ mixing. The solid and dashed lines are generally similar each other. The dotted vertical lines show the locations of the $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ thresholds.
shows the mass spectra correspond to the integrands in the above equations. ${ }^{2}$

3. Polarization phenomena

The phase jump (see Fig. 2(b)) suggests the idea to study the $a_{0}^{0}(980)-f_{0}(980)$ mixing in polarization phenomena $[17,18]$. If the process amplitude with the spin configuration is dominated by the $a_{0}^{0}(980)-f_{0}(980)$ mixing then the spin asymmetry of the cross section jumps near the $K \bar{K}$ thresholds. An example is the reaction $\pi^{-} p_{\uparrow} \rightarrow\left(a_{0}^{0}(980)+f_{0}(980)\right) n \rightarrow a_{0}^{0}(980) n \rightarrow \eta \pi^{0} n$ on a polarized proton target. The corresponding differential cross section has the form

$$
\begin{aligned}
& \frac{d^{3} \sigma}{d t d m d \psi}=\frac{1}{2 \pi}\left[\left|M_{++}\right|^{2}+\left|M_{+-}\right|^{2}\right. \\
& \left.+2 \mathfrak{J}\left(M_{++} M_{+-}^{*}\right) P \cos \psi\right],
\end{aligned}
$$

and the dimensionless normalized spin asymmetry is $A(t, m)=2 \mathfrak{J}\left(M_{++} M_{+-}^{*}\right) /\left(\left|M_{++}\right|^{2}+\left|M_{+-}\right|^{2}\right),-1 \leq$

[^1]
https://daneshyari.com/en/article/5493599

Download Persian Version:
https://daneshyari.com/article/5493599

Daneshyari.com

[^0]: ${ }^{1}$ Each such mechanism reproduces both the narrow resonant peak and the sharp jump of the phase of the amplitude between the $K^{+} K^{-}$ and $K^{0} \bar{K}^{0}$ thresholds.

[^1]: ${ }^{2}$ Here we use the values of the coupling constants of the $f_{0}(980)$ and $a_{0}^{0}(980)$ resonances with the $\pi \pi, K \bar{K}$, and $\eta \pi$ channels obtained in Ref. [36] from the BESIII data on the intensities of the $f_{0}(980) \rightarrow$ $a_{0}^{0}(980)$ and $a_{0}^{0}(980) \rightarrow f_{0}(980)$ transitions measured in the reactions (b) and (c) [32].

