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Abstract

The strong coupling from ALEPH tau decays. We use the publically available non-strange spectral function from
ALEPH tau decays to critically analyze the different determinations of αs(m2

τ) that can be found in the literature and the
numerical impact of their possible weaknesses. We also introduce some novel approaches. We find that perturbative
uncertainties dominate. Our results with different approaches are very stable. Our final value is αs(m2

τ) = 0.328±0.013
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1. Introduction

One of the most powerful tests of asymptotic freedom
of QCD comes from the determination of the strong
coupling from inclusive τ decays [1, 2]. In this work
we summarize our recently made determination of Ref.
[3].

The hadronic decay width can obtained from [4]

Rτ ≡ Γ[τ
− → ντhadrons]
Γ[τ− → ντe−νe]

= 12π S EW

∫ m2
τ

0

ds
m2
τ

(
1 − s

m2
τ

)2
[(

1 + 2
s

m2
τ

)
ImΠ(1)(s) + ImΠ(0)(s)

]
, (1)

where S EW = 1.0201 ± 0.0003 contains the
renormalization-group-improved electroweak correc-
tion [5–7] and

Π(J)(s) ≡
∑
q=d,s

|Vuq|2
(
Π

(J)
uq,V (s) + Π(J)

uq,A(s)
)
, (2)

are the two-point correlation function of quark cur-
rents. Since one can extract the invariant-mass and
spin of the final hadronic system of the τ decays,
one has experimental access to the different spectral

functions ImΠJ
uq,J(s). We make use of the most pre-

cise non-strange spectral functions available ρ(s) =
1
π

ImΠJ (s) ≡ 1
π

ImΠ(1+0)
ud,J (s), coming from the last up-

date of the ALEPH collaboration [8].

2. Theoretical Framework

2.1. Operator Product Expansion (OPE) of the corre-
lators

For large-euclidean momentum, the correlators can
be expanded into series of local operators weighted by
their Wilson coefficients, which can be calculated using
perturbative QCD [9]. At Q2 ∼ m2

τ, the numerical con-
tribution to the different observables is dominated by the
purely perturbative part.

In order to compare the theoretical OPE prediction
with the experimental data, we can make use of the an-
alytic extension of the correlator, which is well defined
in all the complex the plane but in the hadronic cut in
the positive real axis. Using this, it is straightforward to
obtain the exact relation [4, 10, 11]

AωV/A(s0) ≡
∫ s0

sth

ds
s0
ω(s) ImΠV/A(s)

=
i
2

∮
|s|=s0

ds
s0
ω(s)ΠV/A(s) , (3)
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where ω(s) is any weight function analytic in all com-
plex plane except in the positive real axis. We will be
able to extract the experimental AωV/A(s0) from the sec-
ond term of Eq. (3) and the theoretical one from the
third term of the same equation using the OPE of the
correlator.

2.2. Perturbative contribution

The dominant contribution to AωV/A(s0 ∼ m2
τ) is purely

perturbative. It is precisely this fact, as well as the high
sensitivity of this contribution to αs(s ∼ m2

τ), which al-
lows such a precise determination. In order to calculate
the purely perturbative contribution, one can make use
of the Adler function [12], known up to 4 loops [13–18]:

D(s) ≡ −s
dΠP(s)

ds
=

1
4π2

∑
n=0

K̃n(ξ) an
s(−ξ2s) , (4)

where K̃n are known up to n = 4 and as(m2
τ) ≡ αs(m2

τ)
π

satisfies the renormalization group equation

2
s

as

das

ds
=
∑
n=1

βnan
s(s) . (5)

In order to solve the integral of Eq. (3) one can either
expand Aω,P(s0) in a fixed order in αs(ξ2s0) (FOPT) or
use the exact solution to the differential equation (5) in
the βn>5 = 0 approximation, which resums large loga-
rithms (CIPT) [10, 19].

For a given perturbative approach, FOPT or CIPT, we
cut Eq. (4) in n = 5 taking K5 = 275 ± 400 [20] and
varying the scale dependence that arises from the fact
we are cutting the series in the interval ξ2 = {0.5, 2}
as a conservative estimates of perturbative uncertainties.
The difference between FOPT and CIPT is for some mo-
ments Aω(s0) larger than these perturbative uncertainties
precisely because of the large logarithms that CIPT re-
sums. Taking this into account, and in the absence of a
better understanding of higher perturbative corrections,
we average the FOPT and CIPT and add quadratically
half of the difference between both values to give a con-
servative final value.

2.3. Non-Perturbative contribution

The non-perturbative contributions due to the D ≥ 4
operators to a given moment Aω,P can be safely aproxi-
mated as functions of effective dimensional condensates
OD

Aω,NP
V/A (s0) = π

∑
D

a−1,D
OD,V/A

sD/2
0

, (6)

with

ω(−s0x) =
∑

n

an,D xn+D/2 . (7)

The moment associated to Rτ, whose weigth function is
ω(s0x) = (1 − x2)(1 + 2x), is only sensitive the D = 6
and the D = 8 condensates, supressed by m6

τ and m8
τ.

Together with the cancellation of O6 in the V + A chan-
nel, the D ≥ 4 contribution to Rτ happens to be very
supressed [4, 21].

In addition to the non-perturbative OPE contribu-
tions, one has to take into account the differences be-
tween the physical correlators and their OPE aproxi-
mant. These differences are known as quark-hadron
duality violations (DVs) [22–29]. Using Eq. (3), the
contribution of duality violations to the physical observ-
ables studied are given by

ΔAω,DV
V/A (s0) ≡ i

2

∮
|s|=s0

ds
s0
ω(s)

{
ΠV/A (s) − ΠOPE

V/A (s)
}

= −π
∫ ∞

s0

ds
s0
ω(s)ΔρDV

V/A(s) . (8)

These DVs are reduced using pinched weight functions
[4, 11], which are functions that avoid the contribution
to the integral of the region near the cut in the positive
real axis, where the OPE is badly defined. Additionally,
they decrease very fast with the opening of the higher
multiplicity hadronic thresholds [30]. Therefore, they
become very small at s0 ∼ m2

τ, specially in the more
inclusive channel V + A. We are able to make reliable
and conservative estimates of DV uncertainties looking
at the stability of the strong coupling determination both
by taking moments that depend on these DVs in differ-
ent ways and changing s0.

3. Results

3.1. ALEPH-like fits

First we reproduce the determination of the ALEPH
collaboration [8]. They take s0 = m2

τ and the moments
associated to the weight functions

ωkl(s) =
(
1 − s

m2
τ

)2+k ( s
m2
τ

)l (
1 +

2s
m2
τ

)
, (9)

with (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}. For these
moments, duality violations are supressed by, at least,
double pinching. They depend on αs and O4,6,8...16. The
fit becomes possible when one neglects the contribution
of the higher energy condensates, whose contribution is
supressed by powers of m2

τ (Eq. 6).

A. Rodríguez Sánchez / Nuclear and Particle Physics Proceedings 282–284 (2017) 144–148 145



Download English Version:

https://daneshyari.com/en/article/5493747

Download Persian Version:

https://daneshyari.com/article/5493747

Daneshyari.com

https://daneshyari.com/en/article/5493747
https://daneshyari.com/article/5493747
https://daneshyari.com

