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Abstract

We solve the Balitsky-Kovchegov small-x evolution equation in coordinate space. We find that the solution to the
equation is unstable when using an initial condition relevant for phenomenological applications at leading order. The
problematic behavior is shown to be due to a large double logarithmic contribution. The same problem is found when
the evolution of the “conformal dipole” is solved, even though the double logarithmic term is then absent from the

evolution equation.
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1. Introduction

The Color Glass Condensate [1] effective theory of
QCD at high energy has been shown to be in good
agreement with large amount of experimental data on,
for example, deep inelastic scattering, single and dou-
ble inclusive particle production and exclusive vector
meson production, see e.g. [2, 3, 4]. There are two
main ingredients in these calculations: first, one needs
the small-x evolution equation such as the Balitsky-
Kovchegov (BK) equation [5, 6] which describes the
evolution of the dipole-target scattering amplitude as
a function of energy, or equivalently, Bjorken-x. The
dipole amplitude at initial Bjorken-x is the second nec-
essary input, and it can not be obtained from perturba-
tive calculations but it must be fit to experimental data.
The fact that one can indeed obtain a good description
of the precise combined HERA single inclusive data [7]
has been one of the tightest tests for the CGC [3, 8].

An important next step for the description of the sat-
uration phenomena from the CGC framework is to de-
velop the CGC theory to the next to leading order ac-
curacy. First steps in this direction have been taken by
deriving e.g. the photon impact factor [9] and single in-
clusive cross section [10] at this order. The NLO BK
equation is also known [11], but no solution to it existed
before our work [12].
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2. The BK equation at NLO

The BK evolution equation for the dipole operator
S, which is a correlator of Wilson lines U such that
S(x—y) = 1/NATr U (x)U(»)). At NLO accuracy the
equation reads

SNC
0yS(r) = azﬂz Ki®@[SX)S(Y) - S(n]
@2N?
+ ;—#sz ®[SX)S(z=2)S(Y) = S(X)S (V)]
afanC

Py K@ SMISX)-S0L. (D

The quark and the antiquark of the parent dipole are at
transverse positions x and y, and the daughter dipole
sizesare X = [x—z, Y =|y—z, X' = |[x—-Z] and
Y’ = |y —Z/|, and r is the size of the parent dipole. The
convolutions ® are taken by integrating over the daugh-
ter dipole sizes (z in K and both z and 7" in K and K).

The kernel K; includes the leading order BK kernel,
the running coupling part and an a? correction, as
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We implement the running coupling by replacing the
terms proportional to the S function coefficient by the
Balitsky running coupling prescription from Ref. [13].
The kernel K; then reads

asN, K, = as(r)N,
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We will later refer to the part proportional to
In X2/r*In Y2/#? as the double logarithmic term.

The kernels K, and Ky are combinations of rational
expressions of transverse separations and a logarithm
In X?Y"?/(X"*Y?). Note that this logarithm vanishes in
the small parent dipole limit where x — y, in contrast to
the double logarithm. The coupling constant « is eval-
uated at the scale set by the parent dipole, as it is the
only external scale. For explicit expressions, we refer
the reader to Refs. [11, 12].

As an initial condition for the NLO BK equation we
use a modified McLerran-Venugopalan (MV) model
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Here the MV model is modified by introducing an
anomalous dimension y which controls the power-like
tail of the dipole amplitude at small dipole sizes. The
leading order fits to the HERA data prefer [8] values
of y ~ 1.1, which then reduces during the evolution to
y ~ 0.8. The constant Qg parametrizes the saturation
scale at initial Bjorken-x. In this work, we do not seek
for parameter values that are compatible with the ex-
perimental data. In practice, Qs controls the relative
importance of the NLO terms as it scales the value of
as.

3. Solution to the NLO BK

In Fig. 1 we show the evolution speed 9y,N(r)/N(r)
as a function of the dipole size for the MV model
(y = 1) initial condition. At small initial saturation
scales Qs 0/Aqcp, when the strong coupling constant
and the NLO corrections are largest, the evolution speed
is negative at all dipole sizes. With smaller values of ay
(larger saturation scale) the evolution speed turns nega-
tive at small dipole sizes when r < 1/Q;.
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Figure 1: Evolution speed of the dipole amplitude at initial condition
(MV model with y = 1) with different values for the initial saturation
scale.

The negative evolution speed is unphysical, as it cor-
responds to having an unintegrated gluon distribution
that decreases when it is probed at smaller and smaller
x. However, having )N/N ~ Inr in the small r limit
is a signal of mathematical instability, as in that case
there is a small (but finite) r below which the dipole am-
plitude becomes negative in one step dy of the rapidity
evolution. On the other hand, the definition of the dipole
amplitude N(x —y) = 1 = 1/NA(Tr U (U (y)) requires
that N(r) — 0 in the limit » — 0. Also, if the dipole
amplitude does not satisfy this requirement the z inte-
gral in the leading order equation does not converge. In
our numerical analysis we impose by hand a constraint
N(r) > 0.

Let us then trace back the origin of the negative evo-
lution speed. In Fig. 2 we show contributions to 6,N/N
originating from the different terms of the NLO BK
equation. We observe that the double logarithmic term,
which is part of the kernel K, is the one that drives the
evolution speed negative. The other NLO corrections
also decrease the evolution speed but do not cause the
problematic ,N/N ~ Inr behavior.

It has been argued in Ref. [14] that the double loga-
rithmic contributions should be resummed to all orders.
The resummation effectively removes the double loga-
rithmic term from the kernel K| and multiplies the lead-
ing order BK kernel 7>/X?Y? by an oscillatory factor,
which expanded to order o2 gives the double logarith-
mic term to the kernel K;. The initial condition is also
modified by the resummation procedure. We implement
this resummation in our analysis and show in Fig. 3 the
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