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Abstract

Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous
fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly
anisotropic manner. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized
hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently
discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a
powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a
formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
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1. Motivation

Relativistic viscous hydrodynamics has become the
workhorse of dynamical modeling of ultra-relativistic
heavy-ion collisions. It is an effective macroscopic de-
scription based on coarse-graining (via a gradient ex-
pansion) of the underlying microscopic dynamics. Its
systematic construction is still a matter of debate, com-
plicated by the existence of a complex hierarchy of
micro- and macroscopic time scales that are not well
separated in relativistic heavy-ion collisions. Exact
solutions of the highly nonlinear microscopic dynam-
ics can serve as a testbed for macroscopic hydrody-
namic approximation schemes. Such solutions have
been found for the Boltzmann equation in the Re-
laxation Time Approximation (RTA), which describes
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weakly interacting systems, under the assumption of
highly symmetric flow patterns and density distribu-
tions (Bjorken [1] and Gubser [2] flows) of the system
[3, 4, 5, 6, 7]. Here we use both to test different hydro-
dynamic expansion schemes.

2. Kinetic theory vs. hydrodynamics
Hydrodynamics is an effective theory whose form is

independent of the microscopic interaction strength. Its
equations can thus be derived from kinetic theory in a
window of weak coupling and small pressure gradients
where both approaches are simultaneously valid. [We
will here use the RTA Boltzmann equation as our start-
ing point.] Only the values of the transport coefficients
and the equation of state depend on the microscopic
coupling strength; for the strongly coupled quark-gluon
plasma created in heavy-ion collisions, they must be ob-
tained with non-perturbative methods.

The conserved macroscopic currents jμ = 〈pμ〉 (par-
ticle current) and T μν = 〈pμpν〉 (energy-momentum
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tensor) are obtained by taking momentum moments
〈h(p)〉 ≡ g

(2π)3

∫ d3 p
Ep

h(p) f (x, p) of the distribution func-
tion f (x, p) (g is the degeneracy factor.) Hydrodynamic
equations are obtained by splitting the distribution func-
tion into a leading-order contribution f0, parametrized
through macroscopic observables as [8, 9, 10]

f0(x, p) = f0

⎛⎜⎜⎜⎜⎜⎝
√

pμΞμν(x)pν − μ̃(x)

T̃ (x)

⎞⎟⎟⎟⎟⎟⎠ , (1)

and a smaller first-order correction δ f (|δ f / f0| � 1):

f (x, p) = f0(x, p) + δ f (x, p). (2)

In Eq. (1), Ξμν(x) = uμ(x)uν(x) − Φ(x)Δμν(x) + ξμν(x),
where the hydrodynamic flow field uμ(x) defines the
local fluid rest frame (LRF) and Δμν = gμν−uμuν is
the spatial projector in the LRF. Φ(x) and the tensor
ξ(x) partially account for bulk viscous effects and shear-
viscous deviations from local momentum isotropy in
anisotropically expanding systems. T̃ (x), μ̃(x) are the
effective temperature and chemical potential in the LRF.

uμ(x), T̃ (x), and μ̃(x) are fixed by the Landau match-
ing conditions, requiring uμuμ = 1:

T μνuν = Euμ, 〈u·p〉δ f = 〈(u·p)2〉δ f = 0. (3)

Here the eigenvalue E(T̃ , μ̃; ξ,Φ) is the LRF energy den-
sity. The true local temperature T (T̃ , μ̃; ξ,Φ) and local
chemical potential μ(T̃ , μ̃; ξ,Φ) are introduced by de-
manding E(T̃ , μ̃; ξ,Φ) = Eeq(T, μ) and N(T̃ , μ̃; ξ,Φ) ≡
〈u·p〉 f0 = R0(ξ,Φ)Neq(T, μ) where Eeq,Neq are the ther-
mal equilibrium energy and particle densities and R0 is
a factor that depends on the viscous deformations ξ and
Φ of the local momentum distribution [13, 9, 10].

Writing T μν = T μν0 +δT
μν ≡ T μν0 +Π

μν, jμ = jμ0+δ jμ ≡
jμ0 + Vμ, the conservation laws

∂μT μν(x) = 0, ∂μ jμ(x) =
N(x) − Neq(x)
τrel(x)

(4)

are sufficient to determine uμ(x), T (x), μ(x), but not the
dissipative corrections ξμν, Φ, Πμν, and Vμ; their evolu-
tion is controlled by microscopic physics. Different hy-
drodynamic approaches can be distinguished by the as-
sumptions they make about the dissipative corrections
and/or the approximations they use to derive their dy-
namics from the underlying Boltzmann equation:
1. Ideal hydrodynamics assumes local momentum
isotropy of f , setting f0 to be isotropic (ξμν = 0) and
all dissipative currents to zero: Φ = Πμν = Vμ = 0.
2. Navier-Stokes (NS) theory maintains local momen-
tum isotropy at leading order (i.e. in f0), sets Φ= 0, and
postulates instantaneous constituent relations for Πμν

and Vμ by introducing viscosity and heat conduction as
transport coefficients that relate these flows to their driv-
ing forces, but ignores the microscopic relaxation time
that is needed for these flows to adjust to their Navier-
Stokes values. This leads to acausal signal propagation.
3. Israel-Stewart (IS) theory [11] improves on NS the-
ory by evolving Πμν and Vμ dynamically, with evo-
lution equations derived from moments of the Boltz-
mann equation, keeping only terms linear in the Knud-
sen number Kn = λmfp/λmacro.
4. Denicol-Niemi-Molnar-Rischke (DNMR) theory
[12] improves IS theory by keeping nonlinear terms up
to order Kn2, Kn · Re−1 when evolving Πμν and Vμ.
(Terms of second order in the inverse Reynolds number
Re−1 vanish in the RTA used here but would otherwise
appear, too.)
5. Anisotropic hydrodynamics (aHydro) [13] allows
allows for a leading-order local momentum anisotropy
(ξμν, Φ � 0), evolved according to equations obtained
from low-order moments of the Boltzmann equation,
but ignores residual dissipative flows: Πμν = Vμ = 0.
6. Viscous anisotropic hydrodynamics (vaHydro) [14]
improves on aHydro by additionally evolving (using
IS or DNMR theory) the residual dissipative flows
Πμν, Vμ generated by the deviation δ f around the lo-
cally anisotropic leading-order distribution function f0.

3. Exact solutions of the Boltzmann equation
3.1. Systems undergoing Bjorken flow

For highly symmetric flow profiles the Boltzmann
equation can be solved exactly in RTA. Bjorken flow
[1] describes the dynamics of a longitudinally boost in-
variant, transversally homogeneous system. A system
with these symmetries is most conveniently discussed
in Milne coordinates (τ, r, φ, η) where τ = (t2−z2)1/2

and η = 1
2 ln[(t−z)/(t+z)]. Bjorken flow is static in

these coordinates, uμ = (1, 0, 0, 0). In Cartesian co-
ordinates this implies a longitudinal flow velocity pro-
file vz = z/t [1]. The metric in Milne coordinates is
ds2 = dτ2−dr2 − r2dφ2 − τ2dη2. The Bjorken sym-
metry restricts the possible dependence of the distri-
bution function f (x, p) to f (x, p) = f (τ; p⊥,w) where
w = tpz − zE = τm⊥ sinh(y−η) is boost invariant. The
RTA Boltzmann equation then simplifies to an ordinary
differential equation

∂τ f (τ; p⊥,w) = − f (τ; p⊥,w) − feq(τ; p⊥,w)
τrel(τ)

(5)

with the solution [3, 4]

f (τ; p⊥,w) = D(τ, τ0) f0(p⊥,w) (6)

+

∫ τ
τ0

dτ′

τrel(τ′)
D(τ, τ′) feq(τ′; p⊥,w)

U. Heinz et al. / Nuclear and Particle Physics Proceedings 276–278 (2016) 193–196194



Download English Version:

https://daneshyari.com/en/article/5493822

Download Persian Version:

https://daneshyari.com/article/5493822

Daneshyari.com

https://daneshyari.com/en/article/5493822
https://daneshyari.com/article/5493822
https://daneshyari.com

