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Abstract

In our analysis, we combine event-by-event hydrodynamics, within the EKRT formulation, with jet quenching -ASW
Quenching Weights- to obtain high-pT RAA for charged particles at RHIC and LHC energies for different centralities.
By defining a K-factor that quantifies the departure of q̂ from an ideal estimate, K = q̂/(2ε3/4), we fit the single-inclusive
experimental data for charged particles. This K-factor is larger at RHIC than at the LHC but, surprisingly, it is almost
independent of the centrality of the collision.
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1. Introduction

Jet quenching is a fruitful tool to extract medium parameters that characterize the quark-gluon plasma
formed in high-energy nuclear collisions. We perform here an extraction of the q̂ parameter using RHIC and
LHC data on the nuclear modification factor, RAA, for single-inclusive particle production at high transverse
momentum. The formalism of Quenching Weights [1, 2, 3], embedded in EKRT event-by-event (EbyE)
hydrodynamic model of the medium [4], is used.

We define the jet quenching parameter K ≡ q̂/(2ε3/4), motivated by the ideal estimate q̂ideal ∼ 2ε3/4 [5],
where ε is the energy density given by the EKRT hydrodynamic description. Our main conclusions are that
this K-factor is ∼ 2 − 3 times larger for RHIC than for the LHC and, unexpectedly, it is not dependent on
the centrality of the collision.

2. Jet quenching formalism

Our analysis is restricted to the simplest observable, the nuclear modification factor, RAA, given by:

RAA =
dNAA/d2 pT dy

〈Ncoll〉dNpp/dp2
T dy

; (1)

Available online at www.sciencedirect.com

Nuclear Physics A 967 (2017) 492–495

0375-9474/© 2017 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/nuclphysa

http://dx.doi.org/10.1016/j.nuclphysa.2017.05.115

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/nuclphysa
http://dx.doi.org/10.1016/j.nuclphysa.2017.05.115
http://dx.doi.org/10.1016/j.nuclphysa.2017.05.115
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysa.2017.05.115&domain=pdf


hence, both the vacuum and the medium single-inclusive cross sections need to be calculated.
The cross section of a hadron h at rapidity y and transverse momentum pT can be described by

dσAA→h+X

dpT dy
=

∫
dx1

x1

dx2

x2

dz
z

∑
i, j,k

x1 fi/A(x1,Q2)x2 f j/A(x2,Q2)
dσ̂i j→k

dt̂
Dk→h(z, μ2

F) , (2)

where A is the mass number of the nucleus, so A = 1 for the vacuum cross section. fi/A(x1,Q2) are the PDFs,
dσ̂i j→k/dt̂ the partonic cross section and Dk→h(z, μ2

F) the fragmentation functions.
All these computations are done at NLO using the code [6], with the proton PDF set CTEQ6.6M [7] and

DSS vacuum fragmentation functions [8]. The renormalization, fragmentation and factorization scales are
taken as μF = pT . For the medium cross section, EPS09 nPDFs [9] are used and the energy loss is absorbed
in a redefinition of the fragmentation functions:

D(med)
k→h (z, μ2

F) =

1∫

0

dεPE(ε)
1

1 − εD(vac)
k→h

( z
1 − ε , μ

2
F

)
, (3)

where PE(ε) are the ASW Quenching Weights.
The Quenching Weights are the probability distribution of a fractional energy loss, ε = ΔE/E, of the

fast parton in the medium. They are based on two main assumptions: fragmentation functions are not
medium-modified and gluon emissions are independent, see [10]. These are good approximations for the
total coherence case and for soft radiation [11, 12, 13]. Indeed, QW and rate equations are equivalent for
soft radiation and no finite energy effects. In our study, the QW are used in the multiple soft approximation.

The quenching weights, Pi(ΔE/ωc,R), are dependent on two variables: ωc =
1
2 q̂L2, and R = ωcL. These

variables, can be obtained for a dynamic medium by [2]

ω
e f f
c (x0, y0, τprod, φ) =

∫
dξ ξ q̂(ξ), Re f f (x0, y0, τprod, φ) =

3
2

∫
dξ ξ2 q̂(ξ) . (4)

So, we only need to specify the relation between the local value of the transport coefficient q̂(ξ) at a
given point of the trajectory and the hydrodynamic properties of the medium:

q̂(ξ) = K · 2ε3/4(ξ) , (5)

where K � 1 would correspond to the ideal QGP [5]. The local energy density ε(ξ) is taken from the EKRT
simulations [4].

3. EKRT hydrodynamics

We obtain the EbyE space-time distribution of the local energy density by solving the relativistic hy-
drodynamic equations with EKRT initial state, with constant shear viscosity η/s = 0.2 and starting time of
viscous hydrodynamics τ0 = 0.197 fm [4]. In our previous analysis several smooth-averaged hydrodynamic
simulations were used [10]. We show here that our current results are compatible with the previous ones.

There is an ambiguity on the definition of q̂, Eq. (5), for times smaller than the thermalization time τ0.
Nevertheless, as τ0 for the EKRT hydro is much smaller than for the smooth-averaged ones, the differences
coming from the various extrapolations for times prior to thermalization are reduced. Hence, we consider
here only one extrapolation:

q̂(ξ) = q̂(τ0) for ξ < τ0 . (6)
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