

level density in odd–A and odd–odd nuclei, Nucl. Phys. A (2017), http://dx.doi.org/10.1016/j.nuclphysa.2017.03.008

2 *S. Karampagia et al. / Nuclear Physics A* ••• *(*••••*)* •••*–*•••

ARTICI E IN PR

¹ in practice one often has to combine these approaches. The good agreement with the data has ² rendered the shell model a powerful tool of nuclear spectroscopy.

³ The spectroscopic predictions in the framework of the shell model come from the large-scale ³ ⁴ diagonalization. Practical necessity to truncate the orbital space may require the corresponding ⁴ ⁵ renormalization of the interaction and transition operators. The truncation limits the excitation ⁵ 6 6 energy below which the shell model predictions can be reliable (even if we leave aside the contin-⁷ uum decay thresholds). However, the practically useful region in many cases already covers the ⁷ 8 excitations relevant for laboratory experiments and for astrophysical reactions. The shell model ⁸ 9 also correctly predicts statistical properties of nuclear states. Therefore it was used as a testing 9 ¹⁰ ground for many-body quantum chaos [\[1\].](#page--1-0) In the following, we explore the effects of specific ¹⁰ ¹¹ components of the effective shell-model interactions on the properties of nuclear spectra, and ¹¹ ¹² identify the patterns related to the effects of certain parts of these interactions. In particular, we ¹² ¹³ study the qualitative changes of nuclear observables similar to phase transitions which appear as ¹³ ¹⁴ a function of the interaction in the same shell-model framework. In this way we expect to better ¹⁴ 15 15 understand the relationship between the input effective Hamiltonian and the nuclear output.

¹⁶ The nuclear level density given by the shell model is sensitive to the specific features of ¹⁶ ¹⁷ the interaction. There are successful applications of the shell model to the prediction of the ¹⁷ ¹⁸ level density which is a necessary ingredient for the physics of nuclear reactions $[2-7]$. The ¹⁸ 19 19 traditional Fermi-gas models are based on the combinatorics of particle–hole excitations near the ²⁰ Fermi level $[8-10]$, with the resulting level density growing exponentially with energy. In order $[20]$ ²¹ to account for the effects of pairing $[11,12]$ or other interactions of collective nature $[13,14]$, ²¹ ²² various semi-phenomenological or more elaborate self-consistent mean-field approaches [\[15,](#page--1-0) ²² ²³ [16\]](#page--1-0) have been developed. The shell model Monte Carlo approach, for example [\[17\],](#page--1-0) is close in ²³ ²⁴ spirit with the shell model, but may have problems with specific interactions and keeping exact ²⁴ 25 25 quantum numbers. The shell model Hamiltonian inherently includes pairing and other collective ²⁶ interactions. Along with that, matrix elements describing incoherent collision-like processes are ²⁶ ²⁷ present as well. Taking them into account consistently, we come to the level density that, in ²⁷ ²⁸ agreement with data, is a smooth function of excitation energy. Being still limited by truncated ²⁸ 29 29 space, this approach does not require prohibitively large diagonalization. The regular calculation ³⁰ of the first statistical moments of the Hamiltonian is sufficient for reproducing the realistic level ³⁰ 31 density. 31 and 31 and 32 and 33 and 34 and 34 and 34 and 35 and density.

32 32 In this work we study the evolution of simple nuclear characteristics under the variation of the 33 33 values of certain groups of matrix elements in order to link these matrix elements to the emer-³⁴ gence of collective effects in nuclei. This work can be considered as an extension of [\[18\]](#page--1-0) where ³⁴ 35 35 we limited ourselves to even–even isotopes. Here we study the behavior of odd–*A* and odd–odd ³⁶ nuclei in the same mass regions under the variation of interactions. This provides an additional ³⁶ ³⁷ insight on how the presence of unpaired fermions affects the changes of nuclear spectral observ- ³⁷ 38 38 ables and the level density. As will be seen, the effects of the variation of the matrix elements ³⁹ in nuclei with unpaired fermions change the nuclear observables in a strong and systematic way. ³⁹ 40 40 As a result of the shift of rotational and vibrational excitations to lower energy, the level density 41 41 reveals the collective enhancement.

43 43 **2. Matrix elements responsible for collectivity**

44 44

45 45 In the case of the *sd* shell-model space, there are three single-particle levels (orbitals), 46 46 1*s*1*/*2*,* 0*d*5*/*2*,* 0*d*3*/*2, and 63 matrix elements of the residual two-body interaction allowed by angu-47 47 lar momentum and isospin conservation. Similarly, for the *pf* shell, there are four single-particle Download English Version:

<https://daneshyari.com/en/article/5494040>

Download Persian Version:

<https://daneshyari.com/article/5494040>

[Daneshyari.com](https://daneshyari.com)