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Abstract

I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first
part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow
harmonics vn analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, pT , viscosity,
the chemical potential and the charge.
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1. Introducution

Why analytic hydro? The past decade has witnessed a tremendous success of relativistic hydrodynamics
in describing observables of heavy-ion collisions [1]. Nowadays, a number of sophisticated numerical
codes for solving the hydrodynamic equation exist. Together with the realistic initial condition and the
QCD equation of state, they can fit the bulk of heavy-ion data at RHIC and the LHC quite well. In such
circumstances, it is easy to get an impression that there is not much one can do analytically.

Yet, there are multiple reasons to study analytic solutions of the hydrodynamic equation. Firstly, they
provide physical intuition into the problem. There are famous solutions such as the Hubble flow for the
expansion of the universe and the Bjorken flow for the expansion of fireballs in heavy-ion collisions. These
solutions, while different from reality in details, are something one always keeps in mind as the zeroth ap-
proximation. Secondly, the hydrodynamic equation is an interesting and fascinating subject in its own right
from a mathematical viewpoint. Many analytic solutions of the ideal and viscous hydrodynamic equations
have been found over a century. Yet, a complete understanding of the Navier-Stokes equation remains one
of the most challenging problems of modern mathematics. Thirdly, there are interesting questions which
numerical approaches cannot fully answer. For example, ‘How do flow harmonics vn functionally depend
on n, or viscosity?’ It would be interesting if there is a kind of ‘pocket formula’ for the n-dependence of vn.
Last but not least, analytic solutions are useful for testing the accuracy of numerical codes, especially for
viscous hydrodynamics.

In this presentation, I summarize our recent work towards finding and utilizing analytic solutions of
relativistic hydrodynamics [2, 3, 4, 5, 6, 7, 8]. The main goal is to demonstrate that there are actually a lot
of things one can do analytically. In the first part, I construct exact solutions of the second-order conformal
hydrodynamic equation. In the second part, I compute flow harmonics vn analytically for the anisotropically
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deformed Gubser flow [9, 10]. Some of the results have direct phenomenological implications and are worth
pursuing in more elaborate numerical studies.

2. Second-order hydrodynamics

The hydrodynamic equation is the continuity equation for the energy momentum tensor

∇μT μν = 0 , T μν = εuμuν + p(gμν + uμuν) + πμν . (1)

πμν is the shear stress tensor relevant to viscous hydrodynamics. In the Navier-Stokes (first order) approx-
imation, it is simply πμν = −2ησμν where η is the shear viscosity. In the second order approximation, the
precise form of πμν is still under active debate, but it typically contains a lot of terms. If one assumes con-
formal symmetry, the number of terms is reduced [11]. But its most general form is still very complicated

πμν = −2ησμν + τπ
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where Ωμν is the vorticity tensor and ϑ = ∇μuμ is the expansion. The Israel-Stewart equation corresponds to
keeping only the first line. In the second line one may argue that πμν and −2ησμν can be identified. However,
this is valid only in the asymptotic Navier-Stokes regime which is not assumed here.

First, I will be interested in finding exact solutions of (1) together with (2). In general, finding analytic
solutions of (1) is very difficult even in the ideal case πμν = 0. If πμν is given by (2) with all the transport
coefficients assumed to be nonvanishing, it seems impossible to make any analytical progress. However,
there is a trick. To explain this let me review the Gubser flow

3. Gubser flow

One usually solves (1) in the Cartesian coordinates. or in the ‘Rindler’ coordinates

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 . (3)

If there is boost-invariance, it is often convenient to work in the ‘Rindler’ coordinates

ds2 = −dτ2 + dx2
⊥ + x2

⊥dφ2 + τ2dy2 , (4)

where τ =
√
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3 is the proper time, y = 1
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is the spacetime rapidity and x⊥ =
√
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2. If there is
conformal symmetry, one can combine the above coordinate transformation with the Weyl transform of the
metric gμν(x) → Λ2(x)ĝμν(x̂) and solve the hydrodynamic equation in the x̂μ coordinates. Gubser’s idea was
to choose Λ2 = τ2 [9] so that

dŝ2 =
ds2

τ2 =
−dτ2 + dx2⊥ + x2⊥dφ2

τ2 + dy2 = −dρ2 + cosh2 ρ(dΘ2 + sin2 Θdφ2) + dy2 . (5)

The resulting metric is that of the three-dimensional de Sitter space dS 3 and a flat dimension for y. In the
last equality, the dS 3 part is written in the so-called global coordinates. In the latter coordinates, Gubser
considered the simplest form of the flow velocity (ûρ, ûΘ, ûφ, ûy) = (1, 0, 0, 0). With this ansatz, the ideal
hydrodynamic equation ∇μT̂ μν = 0 can be solved very easily. The solution is then transformed back to
Minkowski space

ε ∝ 1
τ4/3

1
(L4 + 2(τ2 + x2⊥) + (τ2 − x2⊥)2)4/3

. (6)

The parameter L can be interpreted as the transverse size of the colliding nuclei. One recognizes that the
factor 1/τ4/3 is identical to the Bjorken flow, but the solution also has a nontrivial dependence on x⊥. It
is a boost-invariant, radially expanding solution. Remarkably, Gubser also derived an exact solution of the
Navier-Stokes equation where πμν = −2ησμν.
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