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Abstract
We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution
satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet
fragmentation.
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1. Introduction

Recent photon measurements at RHIC and LHC have shown deviations between experimental data and
theoretical estimates of the direct photon spectrum and its azimuthal anisotropy [1, 2, 3]. To consistently
explain these deviations, much effort has been devoted to the continuous improvement of the hydrodynamic
modeling [4, 5, 6].

On the other hand, it was also suggested that the photon spectra have geometrical scaling properties in
a wide rage of collision energies and centralities [7]. In this contribution, we discuss the jet fragmentation
processes as a possible mechanism to give rise to the geometrical scaling of photons. Assuming that the
spectrum of quark jets satisfies geometrical scaling, we argue that this scaling property is transferred to
the photon spectrum through collinear photon emissions. We also demonstrate that the collinear emission
preserves the second harmonic coefficient v(2)

jet of quark jets induced by the energy loss in a hot medium,
suggesting an anisotropy of the photon spectrum close to that of quark jets.

2. Inclusive photon production in jet fragmentation

We shall begin with the photon production rate which is given by a convolution of the jet distribution
Njet and the photon production rate nγ in the fragmentation of one quark jet as

dNγ
dyγd 2 p

=

∫
d 2 k1

∫
dy1

∫
d 2 k2

∫
dy2

dNjet

d 2 k1dy1d 2 k2dy2
· dnγ

dyγd 2 p
(p, yγ; k⊥, y1, y2) . (1)
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The dijet distribution can be expanded into the Fourier components of the azimuthal angle φk as

dNjet

d 2 k1dy1d 2 k2dy2
= δ(2)(k1⊥ + k2⊥) f0(k⊥; y)

[
1 + 2v(2)

jet cos(2φk) + · · ·
]
, (2)

where f0(k⊥; y) denotes the isotropic component. We have k1⊥ = −k2⊥ ≡ k⊥, since dijets are produced in
back-to-back configurations in the transverse plane. We assume a boost invariant distribution which depends
only on the rapidity difference y = (y1 − y2)/2, and is independent of the average yave = (y1 + y2)/2.

As for the photon production rate nγ, we compute the production rate in the center-of-mass (COM)
frame of each parton scattering [denoted as dn̄γ/(dy ′γd 2 p)], and then transform back to the COM frame of
the AA collision by using the Lorentz boost along the beam axis. This boost can be implemented as y ′1,2 =
y1,2 − yave = ±y, where the upper and lower signs are for y ′1 and y ′2, respectively. Boosting also the photon
rapidity as y ′γ = yγ − yave, we find a relation between the photon production rates as dnγ(p, yγ; k⊥, y1,2) =
n̄γ(p, yγ − yave; k⊥,±y). Note also that the measure is invariant under this shift dyγ = dy ′γ.

Inserting these expressions into Eq. (1), we find relations between the photon and jet spectra for the
isotropic and the second-harmonic components, respectively, as

1
2πp⊥

dNγ
dyγdp⊥

= 2
∫

d 2 k⊥
∫

dy
∫

dy ′γ f0(k⊥; y)
dn̄γ

dyγd 2 p
(p, y ′γ; k⊥,±y) , (3)

v(2)
γ =

∫
d2 k⊥
∫
dy
∫

dy′γ v(2)
jet cos(2φk) f0(k⊥; y) dn̄γ

dyγd 2 p(p, y ′γ; k⊥,±y)∫
d 2 k⊥

∫
dy
∫

dy ′γ f0(k⊥; y) dn̄γ
dy ′γd 2 p(p, y ′γ; k⊥,±y)

, (4)

where we changed the integral variables from (y1, y2) to (y, yave), and then shifted one of the variables as
yave → y ′γ = y − yave. When the jet distribution is boot invariant, i.e., independent of yave, the photon
spectrum is also independent of yγ and thus is boost invariant.

3. Geometrical scaling of quark jets

Quark jets are produced in the initial 2→ 2 hard processes, and the Ncoll-scaled yield is given by

dNjet

dy1dy2d 2 k⊥
=

Ncoll

σNN

· x1 f1(x1) · x2 f2(x2) · dσ
dt̂
, (5)

where f1(x1) and f2(x2) are the parton distribution functions (PDFs) in the incident nuclei, and dσ/dt̂ is
the differential hard-scattering cross section. The leading order hard-scattering cross sections and the gluon
dominant PDF tell us that the gluon Compton scattering is the dominant 2 → 2 process for the quark jet
production. Therefore, the rapidity y2 corresponds to that of a gluon.

Now, we assume that the PDFs are governed by only one mass scale, that is, the saturation momentum
Qs, and examine the parametric dependence of the jet distribution on this scale. Let us see how a product
of the overlap function Ncoll/σNN ∼ N 4/3

part /σNN and the hard-scattering cross section ∼ k−4⊥ behaves. In
ultrarelativistic heavy-ion collisions, incident nuclei are highly Lorentz-contracted, and each gluon occupies
the average transverse area Q−2

sat . Counting the number of nucleons contained in the reaction zone with a
transverse area S , we have N 2/3

part ∼ S/Λ−2
QCD. On the other hand, Npart is proportional to atomic number A

as Npart ∼ A. The number of partons in a nucleus is also proportional to A, and is alternatively written
as the ratio of the transverse nuclear size to the average area occupied by a gluon. Therefore, we have
A ∼ (Λ−1

QCDA1/3)2/Q−2
sat . Eliminating A, we find N2/3

part ∼ (Q2
sat/Λ

2
QCD)2. Combining the two expressions for

Npart, we obtain k−4⊥ Ncoll/σNN ∼ k−4⊥ (N2/3
part)

2Λ2
QCD ∼ k−4⊥ (SΛ2

QCD)(Q2
sat/Λ

2
QCD)2Λ2

QCD ∼ S (Qsat/k⊥)4, which does
not explicitly depend on ΛQCD. Then we expect that the quark jet distribution shows geometrical scaling:

1
S

dN
dy1dy2d 2 k⊥

= Njet g(y)
(

Qsat

k⊥

)α
, (6)

with an exponent α. The distribution g(y) with respect to the rapidity of jets in their COM frame y defined
above is informed from the hard-scattering cross section, and the normalization constant Njet ∼ O(α2

s) is
determined from pQCD calculation.
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