
Physics Letters B 772 (2017) 534–541

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

KMR kt-factorization procedure for the description of the LHCb forward 

hadron–hadron Z 0 production at 
√

s = 13 TeV

M. Modarres a,∗, M.R. Masouminia a, R. Aminzadeh Nik a, H. Hosseinkhani b, N. Olanj c

a Department of Physics, University of Tehran, 1439955961, Tehran, Iran
b Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, 14395-836 Tehran, Iran
c Physics Department, Faculty of Science, Bu-Ali Sina University, 65178, Hamedan, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2016
Received in revised form 25 June 2017
Accepted 7 July 2017
Available online 13 July 2017
Editor: J. Hisano

Keywords:
Unintegrated parton distribution functions
Z 0 boson production
Semi-NLO calculations
CCFM equations
kt -factorization
LHCb

Quite recently, two sets of new experimental data from the LHCb and the CMS Collaborations have 
been published, concerning the production of the Z 0 vector boson in hadron–hadron collisions with the 
center-of-mass energy EC M = √

s = 13 TeV. On the other hand, in our recent work, we have conducted 
a set of semi-NLO calculations for the production of the electro-weak gauge vector bosons, utilizing the 
unintegrated parton distribution functions (UPDF) in the frameworks of Kimber–Martin–Ryskin (KMR) or 
Martin–Ryskin–Watt (MRW) and the kt -factorization formalism, concluding that the results of the KMR
scheme are arguably better in describing the existing experimental data, coming from D0, CDF, CMS
and ATLAS Collaborations. In the present work, we intend to follow the same semi-NLO formalism and 
calculate the rate of the production of the Z 0 vector boson, utilizing the UPDF of KMR within the 
dynamics of the recent data. It will be shown that our results are in good agreement with the new 
measurements of the LHCb and the CMS Collaborations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Traditionally, the production of the electroweak gauge vector 
bosons is considered as a benchmark for understanding the dy-
namics of the strong and the electroweak interactions in the Stan-
dard Model. It is also an important test to assess the validity of 
collider data. Many collaborations have reported numerous sets 
of measurements, probing different events in variant dynamical 
regions, in direct or indirect relation with such processes, for ex-
ample the references [1–10]. Among the most recent of these 
reports are the measurements of the production of Z 0 bosons 
at the LHCb and CMS Collaborations, for proton–proton collisions 
at the LHC for 

√
s = 13 TeV, with different kinematical regions 

[11,12]. The LHCb data are in the forward pseudorapidity region 
(2 < |η| < 4.5) while the CMS measurements are in the central do-
main (0 < |η| < 2.4).

In our previous work [13], we have successfully utilized the 
transverse momentum dependent (TMD) unintegrated parton dis-
tribution functions (UPDF) of the kt -factorization (the references 
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[14–16]), namely the Kimber–Martin–Ryskin (KMR) and Martin–
Ryskin–Watt (MRW) formalisms in the leading order (LO) and the 
next-to-leading order (NLO) to calculate the inclusive production 
of the W ± and the Z 0 gauge vector bosons, in the proton–proton 
and the proton–antiproton inelastic collisions

P1 + P2 → W ±/Z 0 + X . (1)

In order to have the total production rate of Z 0 boson in the 
calculations, we have used a complete set of 2 → 3 partonic sub-
processes, i.e.

g∗(k1) + g∗(k2) → V (p) + q(p1) + q̄′(p2),

g∗(k1) + q∗(k2) → V (p) + g(p1) + q′(p2),

q∗(k1) + q̄′ ∗(k2) → V (p) + g(p1) + g(p2), (2)

where V represents the produced gauge vector boson. ki and pi , 
i = 1, 2 are the 4-momenta of the incoming and the out-going 
partons. These calculations tend to include some missing contri-
butions from the total production rate of Z 0 boson via extending 
the LO 2 → 1 diagrams to 2 → 3 diagrams by the means of includ-
ing the semi-hard step on the processes into the matrix elements. 
In this way, it has been shown (in Fig. 4 of the manuscript and in 
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Figs. 13 and 14 of [13]) that the predictions that are derived from 
this particular framework can (up to a better approximation) de-
scribe the behavior of the related experimental data. Please bear 
in mind that the uncertainty bound are intentionally chosen by 
manipulating the hard scale μ by a factor of 2. We believe that 
this factor can be chosen (somehow, according to the specifications 
of the experimental measurements) to have some smaller value. 
Hence, the width of the uncertainty bounds cannot fully pin point 
an increase or decrease in the precision of the calculations. The 
results underwent comprehensive and rather lengthy comparisons 
and it was concluded that the calculations in the KMR formalism 
are more successful in describing the existing experimental data 
(with the center-of-mass energies of 1.8 and 8 TeV) from the D0, 
CDF , ATLAS and CMS Collaborations [8,10,17–23]. The success of 
the KMR scheme (despite being of the LO and suffering from some 
misalignment with its theory of origin, i.e. the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations, [24–27]) can 
be traced back to the particular physical constraints that rule its 
kinematics. To find extensive discussions regarding the structure 
and the applications of the UPDF of kt -factorization, the reader 
may refer to the references [28–35].

Meanwhile, arriving the new data from the LHCb and CMS Col-
laborations, the references [11,12], gives rise to the necessity of 
repeating our calculations at the EC M = 13 TeV. This is in part due 
to the very interesting rapidity domain of the LHCb measurements, 
since in the forward rapidity sector (2 < |η f | < 4.5), one can ef-
fectively probe very small values of the Bjorken variable x (x being 
the fraction of the longitudinal momentum of the parent hadron, 
carried by the parton at the top of the partonic evolution ladder), 
where the gluonic distributions dominate and hence the transverse 
momentum dependency of the particles involving in the partonic 
sub-processes becomes important.

In the present work, we intend to calculate the transverse mo-
mentum and the rapidity distributions of the cross-section of pro-
duction of the Z 0 boson using our NLO level diagrams (from the 
reference [13]) and the UPDF of the KMR formalism. The UPDF will 
be prepared using the PDF of MMHT2014 − LO [37]. In the follow-
ing section, the reader will be presented with a brief introduction 
to the semi-NLO framework (i.e. some NLO QCD matrix elements 
and LO UPDF) that is utilized to perform these computations. Since 
we are using LO kt -factorization plus the terms that contributing 
in the collinear QCD factorization at the NLO and NNLO levels, 
therefore we will call our procedure the semi-NLO approach (see 
Fig. 4 and related discussion in the section 3 in which q̄ + q → Z 0

processes are dominant). The section 2 also includes the main de-
scription of the KMR formalism in the kt -factorization procedure. 
Finally, the section 3 is devoted to results, discussions and a thor-
oughgoing conclusion.

2. Semi-NLO framework, KMR UPDF and numerical analysis

Generally speaking, the total cross-section for an inelastic col-
lision between two hadrons (σHadron−Hadron) can be expressed as a 
sum over all possible partonic cross-sections in every possible mo-
mentum configuration:

σHadron−Hadron =
∑

a1,a2=q,g
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In the equation (3), xi and ki,t respectively represent the longitu-
dinal fraction and the transverse momentum of the parton i, while 

fai (xi, k2
i,t, μ

2
i ) are the density functions of the i-th parton. The 

second scale, μi , are the ultra-violet cutoffs related to the virtu-
ality of the exchanged particle (or particles) during the inelastic 
scattering. σ̂a1a2 are the partonic cross-sections of the given parti-
cles. For the production of the Z 0 boson, the equation (3) comes 
down to (for a detailed description see the reference [13])

σ(P + P̄ → Z 0 + X)

=
∑
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yi are the rapidities of the produced particles (since yi � ηi in the 
infinite momentum frame, i.e. p2

i � m2
i ). ϕi are the azimuthal an-

gles of the incoming and the out-going partons at the partonic 
cross-sections. |M|2 represent the matrix elements of the par-
tonic sub-processes in the given configurations. The reader can find 
a number of comprehensive discussions over the means and the 
methods of deriving analytical prescriptions of these quantities in 
the references [13,38–41]. s is the center of mass energy squared. 
Additionally, in the proton–proton center of mass frame, one can 
utilize the following definitions for the kinematic variables:

P1 =
√

s

2
(1,0,0,1), P2 =

√
s

2
(1,0,0,−1),

ki = xiPi + ki,⊥, k2
i,⊥ = −k2

i,t, i = 1,2 . (5)

Defining the transverse mass of the produced particles, mi,t =√
m2

i + p2
i , we can write

x1 = 1√
s

(
m1,te+y1 + m2,te+y2 + mZ ,te+y Z

)
,

x2 = 1√
s

(
m1,te−y1 + m2,te−y2 + mZ ,te−y Z

)
. (6)

Furthermore, the density functions of the incoming partons, 
fa(x, k2

t , μ2) (which represent the probability of finding a parton 
at the semi-hard process of the partonic scattering, with the lon-
gitudinal fraction x of the parent hadron, the transverse momen-
tum kt and the hard-scale μ) can be defined in the framework of 
kt -factorization, through the KMR formalism:
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The Sudakov form factor, Ta(k2
t , μ2), factors over the virtual contri-

butions from the LO DGLAP equations, by defining a virtual (loop) 
contributions as:

Ta(k
2
t ,μ2) = exp

⎛
⎜⎝−

μ2∫

k2
t

αS(k2)
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with Ta(μ
2, μ2) = 1. αS is the LO QCD running coupling constant, 

P (L O )

ab (z) are the so-called splitting functions in the LO, parame-
terizing the probability of finding a parton with the longitudinal 
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