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Global quantum quench with a finite quench rate which crosses critical points is known to lead to 
universal scaling of correlation functions as functions of the quench rate. In this work, we explore 
scaling properties of the entanglement entropy of a subsystem in a harmonic chain during a mass 
quench which asymptotes to finite constant values at early and late times and for which the dynamics is 
exactly solvable. When the initial state is the ground state, we find that for large enough subsystem sizes 
the entanglement entropy becomes independent of size. This is consistent with Kibble–Zurek scaling for 
slow quenches, and with recently discussed “fast quench scaling” for quenches fast compared to physical 
scales, but slow compared to UV cutoff scales.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The behavior of entanglement of a many-body system that un-
dergoes a quantum quench has been a subject of great interest 
in recent times. When the quench is instantaneous (i.e. a sudden 
change of the hamiltonian), several results are known. Perhaps the 
best known result pertains to the entanglement entropy (EE) of 
a region of size l in a 1 + 1 dimensional conformal field theory 
following a global instantaneous quench, S E E (l). As shown in [1], 
S E E(l) grows linearly in time till t ≈ l/2 and then saturates to a 
constant value typical of a thermal state – a feature which has 
been studied extensively in both field theory and in holography. 
Generalizations of this result to conserved charges and higher di-
mensions have been discussed more recently [2–4]. The emphasis 
of these studies is to probe the time evolution of the entanglement 
entropy.

In physical situations, quantum quench has a finite rate, char-
acterized by a time scale δt , that can vary from very small to very 
large. When the quench involves a critical point, universal scaling 
behavior has been found for correlation functions at early times. 
The most famous scaling appears for a global quench which starts 
from a massive phase with an initial gap mg , crosses a critical 
point (chosen to be e.g. at time t = 0) and ends in another mas-
sive phase. For slow quenches (large δt), it has been conjectured 
that quantities obey Kibble–Zurek scaling [5]: evidence for this has 
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been found in several solvable models and in numerical simula-
tions [6,7]. Such scaling follows from two assumptions. First, it 
is assumed that as soon as the initial adiabatic evolution breaks 
down at some time −tK Z (the Kibble–Zurek time) the system be-
comes roughly diabatic. Secondly, one assumes that the only length 
scale in the critical region is the instantaneous correlation length 
ξK Z at the time t = −tK Z . This implies that, for example, one point 
functions scale as 〈O(t)〉 ∼ ξ−�

K Z , where � denotes the conformal 
dimension of the operator O at the critical point. An improved 
conjecture involves scaling functions. For example, one and two 
point correlation functions are expected to be of the form [8–14]

〈O(t)〉 ∼ ξ−�
K Z F (t/tK Z )

〈O(�x, t)O(�x′, t′)〉 ∼ ξ−2�
K Z F

[ |�x − �x′|
ξK Z

,
(t − t′)

tK Z

]
(1)

Some time ago, studies of slow quenches in AdS/CFT models have 
led to some insight into the origin of such scaling without making 
these assumptions [15].

For protocols in relativistic theories which asymptote to con-
stant values at early times, one finds a different scaling behavior 
in the regime �−1

U V 	 δt 	 m−1
phys , where �U V is the UV cutoff 

scale, and mphys denotes any physical mass scale in the problem. 
For example,

〈O(t)〉 ∼ δtd−2� (2)

where d is the space–time dimension. This “fast quench scaling” 
behavior was first found in holographic studies [16] and subse-
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quently shown to be a completely general result in any relativistic 
quantum field theory [17]. The result follows from causality, and 
the fact that in this regime linear response becomes a good ap-
proximation. Finally, in the limit of an instantaneous quench, suit-
able quantities saturate as a function of the rate: for quench to a 
critical theory a rich variety of universal results are known in 1 +1
dimensions [18].

Much less is known about the behavior of entanglement and 
Renyi entropies as functions of the quench rate – a key ingredient 
of universality. This has been studied for the 1d Ising model (and 
generalizations) with a transverse field which depends linearly on 
time, g(t) = 1 − t

τQ
[19,9,20]. The system is prepared in the in-

stantaneous ground state at some initial time, crossing criticality at 
t = 0. The emphasis of [19] and [9,20] is on the slow regime, which 
means τQ 
 a where a is the lattice spacing, while [21] also stud-
ies smaller values of τQ . In particular, [19] and [21] studied the 
EE for half of a finite chain and found that the answer approaches 
S E E ∼ 1

12 log ξK Z after sufficiently slow quenches. This is consistent 
with the standard assumptions which lead to Kibble–Zurek scal-
ing mentioned above. According to these assumptions, the system 
evolves adiabatically till t = −tK Z and enters a phase of diabatic 
evolution soon afterwards. Thus the state of the system at t = 0 is 
not far from the ground state of the instantaneous hamiltonian at 
t = −tK Z . Furthermore when τQ 
 1 in lattice units, ξK Z is large, 
and the instantaneous state is close to criticality. In such a state, 
the entanglement entropy of a subregion of a large chain with N A

boundary points should obey an “area law” c
6 N A log(ξK Z ), where 

c is the central charge. When the subsystem is half space N A = 1
and for the Ising model the central charge is c = 1/2. Similarly, 
[9,20] studied the EE of a subsystem of finite size l in an infinite 
1d Ising model, with a transverse field linear in time, starting with 
the ground state at t = −∞. The EE close to the critical point for 
l 
 ξK Z was found to saturate to S E E = (constant) + 1

6 log(κ(t)ξK Z ). 
The factor κ(t) depends mildly on the time of measurement and 
κ(−tK Z ) ≈ 1. Once again, this result is roughly that of a stationary 
system with correlation length ξK Z , as would be expected from 
Kibble–Zurek considerations. The factor κ(t) is a correction to the 
extreme adiabatic–diabatic assumption. The paper [21] investigates 
an intermediate regime of fast quench (as described above). While 
this paper investigates scaling of S E E as a function of quench rate 
in the slow regime, there is no similar analysis in the fast regime.

In this letter, we study entanglement entropy for a simple sys-
tem: an infinite harmonic chain (i.e. a 1 + 1 dimensional bosonic 
theory on a lattice) with a time dependent mass term which 
asymptotes to constant finite values at early and late times. We 
choose a mass function for which the quantum dynamics can be 
solved exactly. The use of such a protocol allows us to explore the 
whole range of quench rates, where the speed of quench is mea-
sured in units of the initial gap rather than the lattice scale. We 
compute the entanglement entropy for a subsystem of size l (in 
lattice units) in the middle of the quench and find that it scales 
in interesting ways as we change the quench rate. The dimension-
less quantity which measures the quench timescale is �Q = m0δt
where m0 is the initial gap.

2. Our setup and quench protocols

The hamiltonian of the harmonic chain is given by

H = 1

2

∞∑
n=−∞

[
P 2

n + (Xn+1 − Xn)
2 + m2(t)X2

n

]
(3)

where (Xn, Pn) are the usual canonically conjugate scalar field 
variables on an one dimensional lattice whose sites are labelled 

by the integer n. The mass term m(t) is time dependent. All quan-
tities are in lattice units. In terms of momentum variables Xk, Pk

Xn(t) =
π∫

−π

dk

2π
Xk(t) eikn Pn(t) =

π∫
−π

dk

2π
Pk(t) eikn (4)

the equation of motion is given by

d2 Xk

dt2
+ [4 sin2(k/2) + m2(t)]Xk = 0 (5)

We are interested in functions m(t) which asymptote to constant 
values m0 at t → ±∞, and pass through zero at t = 0. Let fk(t) be 
a solution of (5) which asymptotes to a purely positive frequency 
solution ∼ e−iω0t/

√
2ω0 at t → −∞, where

ω2
0 = 4 sin2(k/2) + m2

0. (6)

A mode decomposition

Xk(t) = fk(t)ak + f �
k (t)a†

−k (7)

with [ak, a
†
−k′ ] = 2πδ(k − k′) can be then used to define the “in” 

vacuum by ak|0〉 = 0 for all k. The solutions fk(t) are chosen to 
satisfy the Wronskian condition fk( ḟk)

� − ( ḟk) f �
k = i. The state |0〉

then denotes the Heisenberg picture ground state of the initial 
Hamiltonian. The normalized wavefunctional for the “in” vacuum 
state is given by

�0(Xk, t) =
∏

k

1

[√2π f �
k (t)]1/2

exp

[
1

2

(
ḟk(t)

fk(t)

)�

Xk X−k

]
(8)

We will choose a quench protocol for a mass function for which 
the mode functions fk(t) can be solved exactly. The particular 
mass function we use is

m2(t) = m2
0 tanh2(t/δt) (9)

The corresponding mode functions are given by

fk = 1√
2ω0

(2)iω0δt cosh2α(t/δt)

E ′
1/2 Ẽ3/2 − E1/2 Ẽ ′

3/2

×

[Ẽ ′
3/22 F1(ã, b̃,

1

2
;− sinh2(t/δt))

+E ′
1/2 sinh(t/δt)2 F1(ã + 1

2
, b̃ + 1

2
,

3

2
;− sinh2(t/δt))]

where we have defined

ω2
0(k) = 4 sin2(k/2) + m2

0

α = 1

4
[1 +

√
1 − 4m2

0δt2]

ã = 1

4
[1 +

√
1 − 4m2

0δt2] + i

2
δtω0

b̃ = 1

4
[1 +

√
1 − 4m2

0δt2] − i

2
δtω0

E1/2 = �(1/2)�(b̃ − ã)

�(b̃)�(1/2 − ã)

Ẽ3/2 = �(3/2)�(b̃ − ã)

�(b̃ + 1/2)�(1 − ã)

E ′
c = Ec(ã ↔ b̃). (10)
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