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Leading order (α4) finite size corrections in muonic deuterium are evaluated within a few body formalism 
for the μ− pn system in muonic deuterium and found to be sensitive to the input of the deuteron wave 
function. We show that this sensitivity, taken along with the precise deuteron charge radius determined 
from muonic atom spectroscopy can be used to determine the elusive deuteron D-state probability, P D , 
for a given model of the nucleon–nucleon (NN) potential. The radius calculated with a P D of 4.3% in the 
chiral NN models and about 5.7% in the high precision NN potentials is favoured most by the μ−d data.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The lightest nucleus, namely, the deuteron, has traditionally 
held an important place in nuclear physics as a testing ground 
for the nucleon–nucleon interaction. Determining the D-state prob-
ability in the deuteron wave function in particular has been a 
classic problem of nuclear physics [1–3]. Stating the problem in 
simple words, the deuteron has a quadrupole moment and hence 
cannot be in a pure S-state but rather a D-state admixture is re-
quired. However, as it was shown in [4] that the D-state probabil-
ity, P D = ∫ ∞

0 w2(r)dr (with w(r) being the deuteron radial wave 
function with l = 2), is inaccessible directly to experiments, it is 
usually the asymptotic D-state to S-state wave function ratio, η [2,
5], which is determined. There do exist attempts to determine P D
from the measured magnetic moment of the deuteron, μD , with, 
μD = μS − (3/2)P D(μS − 1/2) + δR , where, μS = μP + μN is the 
isoscalar nucleon magnetic moment. However, the term δR which 
includes mesonic exchange effects, relativistic corrections, dynami-
cal effects and isobar configurations in the deuteron introduces un-
certainties in the extraction of P D [6]. This fact was noticed in one 
of the oldest works by Feshbach and Schwinger [1] on the theory 
of nuclear forces which gave the D-state probability, P D , ranging 
between 2% to 6%. Much later, Ref. [7] listed values of P D ranging 
from 0.28 to 6.47% for 9 different nucleon–nucleon (NN) potentials. 
However, earlier in [8] the possible minimum was shown to be 
0.45%. With P D not being a measurable quantity, Refs. [2] and [5]
determined the asymptotic ratio η = 0.0256 ± 0.0004 and 0.0268 
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± 0.0013 from tensor analyzing powers in sub-Coulomb (d, p) re-
actions and dp elastic scattering respectively. In the absence of a 
“measured” D-state probability, theoretical models of the NN in-
teraction also try to reproduce the asymptotic ratio η determined 
from experiments (in addition to other data) to confirm the relia-
bility of the NN model [3].

The purpose of this work is to present a new method which 
provides a means to fix the percentage of the “elusive” [4] D-
state probability, P D , from experiments in an indirect manner. The 
method is particularly useful in view of the very high precision re-
ported by recent muonic deuterium experiments [9]. It is based on 
a few body calculation of the leading order (α4) finite size correc-
tions (FSC) to the energy levels of muonic deuterium atoms. There 
exists extensive literature on corrections including the deuteron 
polarization [10–12], with detailed calculations of FSC at higher 
orders (α5, α6 etc) [13,10–12]. The sensitivity of the higher order 
FSC to the form of the nucleon–nucleon potential (and hence the 
deuteron wave function) is found to be small [10,12] or negligi-
ble [14]. The leading FSC at order α4 in these works is written in 
terms of the deuteron charge radius. The few body formalism of 
the present work helps in revealing the dependence of the lead-
ing FSC term on the proton and neutron form factors as well 
as the deuteron wave function. We show that a comparison of 
the order α4 FSC with those of Ref. [9] where the radius is pre-
cisely extracted from measurements in muonic deuterium provides 
a method to adjust the deuteron D-state probability. To be spe-
cific, we present calculations using different parametrizations of 
the deuteron wave function (with different amounts of the D-state 
probabilities) and compare the corrections with those given in [9]
in a form dependent on the deuteron charge radius, rd . Though 
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the general trend of the results is an increase in the radius for 
smaller values of P D , the results are found to depend on the type 
of model used. In the class of chiral models [15], P D = 4.3% is 
found to be favourable for the closest agreement with the precise 
value of rd = 2.12562(78) fm [9]. Using high precision NN poten-
tials such as Nijmegen, Reid, Paris etc. [16], P D = 5.7% to 5.8% is 
favoured by the μd data.

2. Finite size effects in muonic deuterium

Finite size corrections (FSC) to the energy levels in the hydro-
gen atom has been a topic of revived interest [17] in the past 
few years due to the increase in the precision achieved in atomic 
spectroscopy measurements. These effects are manifested more 
strongly in muonic atoms due to the fact that the muon is about 
200 times heavier than the electron and hence has a Bohr radius 
which is much smaller. In view of the recent precise measurement 
of the Lamb shift in muonic deuterium [9], it seems timely to put 
forth the question as to what other impact (apart from the precise 
radius determination) does this measurement have on physics. In 
order to see this, we study the effects of deuteron structure on the 
energy levels in this atom. The present work considers the effects 
at leading order (α4) and we refer the reader to [10–12] for higher 
order corrections.

2.1. Electromagnetic muon–deuteron potential

We investigate the finite size effects by calculating the en-
ergy correction, �E , using first order perturbation theory involving 
an electromagnetic muon–deuteron potential, Vμ−d . The latter is 
constructed using a three body approach to the muon–proton–
neutron system with the proton and neutron being bound inside 
the deuteron. As we will see below, the μ− p and μ−n interac-
tions are obtained using the proton and neutron electromagnetic 
form factors and the pn interaction is contained in the deuteron 
wave function. Such a potential can be constructed using standard 
techniques from scattering theory where we first write down the 
scattering amplitude to obtain the potential Vμ−d(q) in momen-
tum space and then evaluate its Fourier transform which enters 
the energy correction given by, �E = ∫ ∞

0 �V (r)|�nl(r)|2d3r. This 
procedure of obtaining potentials in coordinate space is also com-
mon in quantum field theory [18–20]. Here, �V is the difference 
of Vμ−d(r) and the μ−d electromagnetic potential assuming the 
deuteron to be point-like. Details of the few body formalism used 
here can be found in [21,22]. We shall repeat the relevant steps 
briefly below.

The Hamiltonian of the quantum system consisting of a muon 
and a nucleus (with A nucleons) is given as [21], H = H0 +
Vμ− A + H A , where H0 is the muon-nucleus kinetic energy op-

erator (free Hamiltonian), Vμ− A = ∑A
i=1 V i , the sum of muon–

nucleon potentials, V i ≡ Vμ−N (|R − ri |), where R and ri are the 
coordinates of the muon and the ith nucleon with respect to the 
centre of mass of the nucleus and H A is the total Hamiltonian 
of the nucleus containing the potential term, 

∑
i �= j V N N(|ri − r j |). 

We proceed with the assumption that the nucleus remains in its 
ground state during the scattering process, i.e., H A |�〉 = ε |�〉 and 
that the nucleons occupy fixed positions inside the nucleus. The 
muon-nucleus elastic scattering amplitude can be expressed as 
[21] f (k′, k; E) = −(μ/π) 〈 k′, � | T (E) |k, � 〉 in terms of the ma-
trix elements of the operator T obeying the Lippmann–Schwinger 
(L-S) equation, T = V + V (E − H0 − H A)−1T . |k, � 〉 and |k′, �〉
are the initial and final asymptotic states which differ only in the 
direction of the relative muon nucleus momenta k and k′ . Since 
the electromagnetic potential, Vμ− A , is proportional to the cou-
pling constant α ∼ 1/137, it is reasonable to truncate the L-S 

equation at first order and approximate T = V = ∑
i V i . Thus, 

T (k′, k) = V (k′, k) and denoting, T (k′, k) ≡ 〈 k′, � | T (E) |k, � 〉, we 
have V (k′, k) = 〈 k′, � | ∑A

i=1 V i |k, � 〉. If the internal Jacobi co-
ordinates are denoted by xi , then relating them with ri = aix1 +
bi x2 + ... + gixA−1, we can write,

V (k′,k) =
∫

dx1 dx2 ...dxA−1 |�(x1, x2, ...)|2
A∑

i=1

V i(k
′,k, ri) ,

(1)

where, V i(k′, k, ri) = V i(k′, k) exp[i(k − k′) · ri]. The above dis-
cussion is valid for any nucleus with A nucleons. In case of the 
muon–deuteron system, this reduces to

V (k′,k)

=
∫

dx1 |�d(x1)|2 [ Vμ− p(k′,k,
1

2
x1) + Vμ−n(k

′,k,−1

2
x1) ]

(2)

where we used, x1 = r1 − r2, r1 = (1/2)x1 and r2 = −(1/2)x1. 
We identify 1 and 2 with proton and neutron so that, V 1 = Vμ− p , 
V 2 = Vμ−n and �d is the deuteron wave function.

To evaluate (2), we need the μ−-nucleon electromagnetic po-
tential, which, with the inclusion of the nucleon electromagnetic 
form factors G N

E (q2) can be written using the formalism of the 
Breit equation [18] within the one-photon-exchange interaction. 
Since such a potential was explicitly derived in [17,18] by eval-
uating the elastic muon–nucleon amplitude expanded in powers 
of 1/c2, we shall not repeat the derivation here. This potential 
with form factors contains 23 terms [18] corresponding to the 
(i) Coulomb potential, (ii) Darwin terms, and (iii) spin dependent 
terms which give rise to fine and hyperfine structure. If we con-
sider only the scalar parts of the Breit potential, they depend only 
on q2 and hence we can write, Vμ−N (k, k′) ≡ Vμ−N (q) [18,17], 
where, q = k − k′ is the momentum transfer carried by the ex-
changed photon. Denoting Q = |q|, the μ−N potential is given as 
[17],

Vμ−N(Q ) = −4πα
G N

E (Q 2)

Q 2

{
1 − Q 2

8m2
N c2

− Q 2

8m2
μc2

}
, (3)

where mN and mμ are the nucleon and muon masses. G N
E (Q 2) is 

the nucleon electric form factor. A Fourier transform of the first 
term in the curly bracket leads to the μ−N Coulomb potential for 
a finite sized nucleon. The next two terms in the curly brackets 
are relativistic corrections, the Darwin terms in the muon (spin 
1/2)–nucleon (spin 1/2) μ−N interaction Breit potential. The Dar-
win term Q 2/8m2

N c2 is conventionally not considered as a part of 
the nucleon form factor G N

E (q2) [23] and hence is kept explicitly in 
the muon–nucleon potential here. Putting together (2) and (3) we 
obtain the muon–deuteron electromagnetic potential, Vμ−d(Q ) =
Vμ− p(Q ) 

∫
dx |�d(x)|2 e−iq·x/2 + Vμ−n(Q ) 

∫
dx |�d(x)|2 eiq·x/2, in 

momentum space. The integrals in this expression can be shown 
to reduce to [7] G0(Q ) = ∫ ∞

0 [u2(r) + w2(r)] j0(Q r/2) dr, where, 
u(r) and w(r) are the radial parts of the deuteron S- and D-wave 
functions. Thus, Vμ−d(Q ) = (Vμ− p(Q ) + Vμ−n(Q ))G0(Q ), so that,

Vμ−d(Q )

= −4πα
G0(Q )[G p

E(Q 2) + Gn
E(Q 2)]

Q 2

(
1 − Q 2

8m2
N

− Q 2

8m2
μ

)
,

(4)

where the proton and neutron masses have been written as mp ≈
mn ≈ mN for simplicity. We note here that the three body formal-
ism allows us to include the relativistic corrections in the form of 
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