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We examine the stability of some non-supersymmetric supergravity solutions that have been found 
recently. The first solution is AdS5 × M6, for M6 an stretched C P 3. We consider breathing and squashing 
mode deformations of the metric, and find that the solution is stable against small fluctuations of this 
kind. Next we consider type IIB solution of AdS2 × M8, where the compact space is a U (1) bundle over 
N(1, 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find 
that the solution is stable under small fluctuation modes of the corresponding deformations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Selecting a stable solution among the many candidate super-
gravity solutions is a major problem in any Kaluza–Klein compact-
ification. One way to guarantee the stability is to demand that the 
solution preserve a portion of supersymmetry [1–3]. In the absence 
of supersymmetry, on the other hand, it is difficult to conclude 
whether a particular solution is stable. In fact, one needs to exam-
ine the stability under small perturbations in all possible directions 
of the potential. Moreover, even if a solution is stable under such 
small perturbations, there still remains the question of stability un-
der nonperturbative effects [4]. Finding non-supersymmetric stable 
solutions, however, becomes important if we are to construct real-
istic phenomenological models in which supersymmetry is sponta-
neously broken.

Freund–Rubin solutions can be divided into two main classes 
depending on whether or not the compact space encompasses 
(electric) fluxes [5,6]. When the flux has components only along 
the AdS direction, it has been observed that the majority of so-
lutions either preserve supersymmetry (and hence stable), or at 
least are perturbatively stable. For solutions that support flux in 
the compact direction (Englert type), however, supersymmetry is 
often broken. They are in fact suspected to be unstable, though, 
the direct computation of mass spectrum and determination of sta-
bility is more involved. Englert type solution of AdS4 × S7, for in-
stance, was shown to be unstable [7], and this was further general-
ized to seven dimensional spaces which admit at least two Killing 
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spinors [8]. Pope–Warner solution is another non-supersymmetric 
example which supports flux in the compact direction [9], and was 
proved to be unstable much later [10]. Englert type solutions, in 
spite of their possible instability, have played a key role in studying 
the holographic superconductors. By employing similar techniques 
that we use in this paper, domain wall solutions were found that 
interpolate between the Englert type and the skew-whiffed solu-
tions. The domain wall solutions were then used to describe holo-
graphic superconductor phase diagrams [11].

The stability of Freund–Rubin type geometries of the form 
AdS p × Mq , where AdS p is anti-de Sitter spacetime and Mq a 
compact manifold, has also increasingly been studied after the dis-
covery of the AdS/CFT correspondence [12]. Stability is important 
for understanding a possible dual conformal field theory (CFT) de-
scription. For stable solutions, the spectrum of the masses directly 
yields the dimensions of certain operators in such a CFT. Unstable 
solutions can still have a dual CFT description but the physics is 
different [13]. Since the curvature of AdS is negative, not all the 
tachyonic modes lead to instability. In fact, scalars with m2 < 0
may also appear if their masses are not below a bound set by the 
curvature scale of AdS [3].

Recently, some new non-supersymmetric compactifying solu-
tions of eleven-dimensional supergravity and type IIB supergravity 
have been found [14,15]. Specifically, the eleven-dimensional su-
pergravity solution consists of AdS5 × M6, where for M6 there 
are two possible choices. For the first solution M6 is C P 3 with 
the standard Fubini-Study metric, which was derived and studied 
in [16], and it was further shown that is perturbatively stable [17]. 
For the second solution S2 fibers of C P 3 are slightly stretched with 
respect to the base manifold. Type IIB solution, on the other hand, 
is AdS2 × M8, where M8 is a U (1) bundle over N(1, 1). All these 
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solutions have fluxes in the compact direction, they break super-
symmetry and therefore it is important to know whether they are 
stable.

It is also interesting to see how these new solutions might arise 
from near horizon geometries of some particular brane configura-
tions. This would then lead us to the construction of the CFT duals 
[18]. For the eleven-dimensional supergravity solutions, first no-
tice that the compact manifold admits a nontrivial 2-cycle over 
which we can wrap branes. Therefore, one way to get the AdS5
factor is to construct a Ricci flat cone over the compact mani-
fold and then consider fractional 3-branes (wrapped M5-branes 
over the 2-cycles) in the orthogonal directions placed at the tip 
of the cone. The near horizon geometry of this brane configuration 
would be AdS5 × M6. Similarly, for the type IIB case, since M8 is 
Einstein and admits nontrivial 3-cycles, we can construct a Ricci 
flat cone over it, and then put fractional D0-branes (D3-branes 
wrapped over 3-cycles of M8) at the tip of the cone. Therefore 
we expect AdS2 × M8 solution to arise as the near horizon limit of 
this D0-brane configuration.

In this paper we examine the stability of solutions under small 
perturbations of the metric. For getting consistent equations of 
motion on AdS , however, we also need to introduce deformations 
of the fluxes. Here we follow an approach which is close to that 
of [19,20]. For compactification to AdS5 the metric deformations 
correspond to the breathing and squashing modes. Including the 
deformation of the 4-form flux would correspond to three mas-
sive mode excitations on the AdS space. In type IIB case, however, 
the bundle structure of the compact manifold allows a more gen-
eral deformation, which, in turn, results in seven massive mode 
excitations. Apart from deriving the mass spectrum of small fluc-
tuations, our approach has the advantage of providing us with a 
set of consistent reduced equations on AdS space, so that any so-
lution to these equations can be uplifted to a supergravity solution 
in eleven or ten dimensions.

2. Stability of AdS5 × C P 3 compactification

In this section we consider the solution AdS5 × M6, where M6
is C P 3 written as an S2 bundle over S4 [14], and study its stabil-
ity under small perturbations. We start by deforming the metric 
along the fiber and the base by some unknown scalar functions 
on AdS5. To get consistent reduced equations we see that the 
4-form flux also needs to be deformed. After deriving the curvature 
tensor of the metric we write the supergravity equations of mo-
tion, and then linearize the equations around the known solutions. 
This allows us to read the mass of the small fluctuations corre-
sponding to those deformations. If the mass squared falls in the 
Breitenlohner–Freedman range then the solution is stable against 
such perturbations.

To begin with, let us take the eleven dimensional spacetime to 
be the direct product of a 5 and 6-dimensional spaces,

ds2
11 = ds2

AdS5
+ ds2

6. (1)

For the 6-dimensional space the metric reads

ds2
6 = dμ2 + 1

4
sin2 μ�2

i + λ2(dθ − sinφ A1 + cosφ A2)
2

+ λ2 sin2 θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)2
, (2)

with λ the squashing parameter, and

Ai = cos2 μ

2
�i, (3)

d�i = −1

2
εi jk� j ∧ �k. (4)

This is an S2 bundle over S4, and for λ2 = 1 we get the Fubini–
Study metric on C P 3.

To discuss the stability, we deform the metric as follows:

ds2 = e2A(x)gαβdxαdxβ

+ e2B(x)
(

dμ2 + 1

4
sin2 μ�2

j

)

+ e2C(x)(dθ − sinφ A1 + cosφ A2)
2

+ e2C(x) sin2 θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)2
, (5)

where gαβ is the AdS5 metric, and A(x), B(x), and C(x) are arbi-
trary scalar functions on AdS5. In fact, B(x) and C(x) correspond 
to what is usually called the breathing and the squashing mode 
deformations. We choose the following vielbein basis

eα = e A(x)eα α = 0,1,2,3,4

e0 = eB(x)e0

ei = eB(x)ei i = 1,2,3

ea = eC(x)ea a = 5,6, (6)

where the indices α, β, . . . indicate the 5d spacetime coordinates, 
and the rest are related to the 6-dimensional space, and

e0 = dμ, ei = 1

2
sinμ�i,

e5 = λ(dθ − sinφ A1 + cosφ A2),

e6 = λ sin θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)
. (7)

Evaluation of the Ricci tensor of this deformed metric yields

Rαβ = e−2A{
Rαβ − ∇2 Aδαβ + 4∂β B∂α(A − B)

+ 2∂βC∂α(A − C)
}
, (8)

Rij = (
3e−2B − e2(C−2B) − e−2A∇2 B

)
δi j, (9)

Rab = (
e−2C + e2(C−2B) − e−2A∇2C

)
δab. (10)

Next, as in [14], we want to write a similar ansatz for the gauge 
field strength. However, since we have perturbed the metric with 
some scalar functions on AdS space we must add an extra term 
for consistency. Further, it is easier first to write the Hodge dual 
ansatz as follows

∗11 F4 = ε5 ∧ (
α(x)e56 + γ (x)K

) + ∗5dη ∧ Im
, (11)

where we have defined,

R1 = sinφ
(
e01 + e23) − cosφ

(
e02 + e31), (12)

R2 = cos θ cosφ
(
e01 + e23)

+ cos θ sinφ
(
e02 + e31) − sin θ

(
e03 + e12), (13)

K = sin θ cosφ
(
e01 + e23) + sin θ sinφ

(
e02 + e31)

+ cos θ
(
e03 + e12), (14)

Re
 = R1 ∧ e5 + R2 ∧ e6, (15)

Im
 = R1 ∧ e6 − R2 ∧ e5, (16)

ω4 = e0 ∧ e1 ∧ e2 ∧ e3. (17)

As F4 ∧ F4 = 0 (see (21)), the Maxwell equation reads

d∗11 F4 = ε5 ∧ (α − γ ) ∧ Im
 + d∗5dη ∧ Im
 = 0, (18)

where we used [14],
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