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A unique feature of gravity is its ability to control the information accessible to any specific observer. We 
quantify the notion of cosmic information (‘CosmIn’) for an eternal observer in the universe. Demanding 
the finiteness of CosmIn requires the universe to have a late-time accelerated expansion. Combining the 
introduction of CosmIn with generic features of the quantum structure of spacetime (e.g., the holographic 
principle), we present a holistic model for cosmology. We show that (i) the numerical value of the 
cosmological constant, as well as (ii) the amplitude of the primordial, scale invariant, perturbation 
spectrum can be determined in terms of a single free parameter, which specifies the energy scale at 
which the universe makes a transition from a pre-geometric phase to the classical phase. For a specific 
value of the parameter, we obtain the correct results for both (i) and (ii). This formalism also shows that 
the quantum gravitational information content of spacetime can be tested using precision cosmology.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

It is now well established that information is a physical en-
tity [1] and the flow of information has concrete physical conse-
quences. The fact that gravity controls the amount of spacetime 
information accessible to a given observer, suggests that one can 
acquire deeper insights into spacetime dynamics through its in-
formation content. The concept of information, being a common 
ingredient in both classical and quantum regimes, can thus be used 
to provide a link between the descriptions of spacetime in these 
two domains.

The key difficulty in formulating this connection lies in quanti-
fying the amount of spacetime information. While this is indeed 
difficult for a general spacetime, we show that it is possible to 
introduce a natural definition of information content in the con-
text of cosmological spacetimes (‘CosmIn’) and use it to link the 
quantum and classical phases of the universe. Moreover, we shall 
see that this information paradigm allows us to determine both, 
(i) the numerical value of the cosmological constant and (ii) the 
amplitude of the primordial, scale invariant, power spectrum of 
perturbations, thus providing a holistic description of cosmology.

In any Friedmann model, the proper length-scales (say, the 
wavelengths of the modes of a field) scale as λ(a) ∝ a and can 
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cross the proper Hubble radius H−1(a) = (ȧ/a)−1 as the universe 
evolves. The number of modes dN located in the comoving Hub-
ble volume V H (a) = (4π/3)(aH)−3, which have comoving wave 
numbers in the range d3k, is given by dN = V H (a)d3k/(2π)3 ≡
V H (a)dVk/(2π)3 where dVk = 4πk2dk. A mode with a comoving 
wave number k crosses the Hubble radius when k = k(a) ≡ aH(a). 
So, the modes with wave numbers between k and k + dk, where 
dk = [d(aH)/da] da, cross the Hubble radius during the interval 
(a, a +da). We define the information associated with modes which 
cross the Hubble radius during any interval a1 < a < a2 by

N(a2,a1) = ±
a2∫

a1

V H (a)

(2π)3

dVk[k(a)]
da

da = ± 2

3π
ln

(
h1

h2

)
(1)

where h(a) ≡ H−1(a)/a is the comoving Hubble radius and h1 =
h(a1), h2 = h(a2). The sign is chosen to keep N positive, by defini-
tion.

In the absence of any untested physics from the matter sec-
tor (like e.g., inflationary scalar fields, which we will not invoke 
in this paper), the universe is radiation dominated at early epochs 
and, classically, has a singularity at a = 0. In reality, the classi-
cal description breaks down when quantum gravitational effects 
set in. We assume that the universe makes a transition from a 
quantum, pre-geometric phase to the classical, geometric phase at 
an epoch a = aQG when the radiation energy density is ρR = ρQG

http://dx.doi.org/10.1016/j.physletb.2017.07.066
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2017.07.066
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:paddy@iucaa.in
mailto:hamsa.padmanabhan@phys.ethz.ch
http://dx.doi.org/10.1016/j.physletb.2017.07.066
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.07.066&domain=pdf


82 T. Padmanabhan, H. Padmanabhan / Physics Letters B 773 (2017) 81–85

Fig. 1. Various length scales of interest in cosmological evolution. See text for dis-
cussion. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

where (8π/3)ρQG ≡ E4
QG. We express the energy scale as EQG ≡

ν−1 EPl where EPl ≡ h̄c/LP = 1/LP in natural units (h̄ = 1 = c) and 
L P ≡ (Gh̄/c3)1/2 = G1/2 is the Planck length; ν is a numerical fac-
tor which, as we shall see, can be determined from observations 
[2]. The Hubble radius at a = aQG is H−1

QG ≡ ν2L P .
If the universe was populated by sources which satisfy (ρ +

3p) > 0 for all a > aQG, then the function N(a, aQG), defined by 
Eq. (1), is a monotonically increasing function of a and diverges as 
a → ∞. It is reasonable to demand that N(a, aQG) should be finite 
and its finite value should be determined by purely quantum gravita-
tional (QG) considerations. Such a behavior is a natural consequence 
of the discreteness of space and the existence of a minimal length 
— which is a generic feature of quantum gravity models — leading 
to a finite reservoir of information in the QG phase. This would 
require the comoving Hubble radius H−1(a) to reach a maximum 
value at some epoch, say, a = a� and then decrease. [If we do not 
invoke untested physics, and consider a universe made of radiation, 
matter and (possibly) the cosmological constant, then it is easy to 
show that N cannot be finite and monotonic, asymptoting to a con-
stant. This can be seen from Fig. 1, in which each mode is repre-
sented by a vertical (blue) line. Unless the comoving Hubble radius 
asymptotes to a constant, more and more modes will keep enter-
ing the Hubble radius, and N cannot asymptotically approach a 
constant value. Clearly, the comoving Hubble radius cannot asymp-
tote to a constant in a universe containing radiation, matter and 
possibly the cosmological constant.] Hence, the number of modes 
N(a�, aQG) which enter the Hubble radius during the entire his-
tory of the universe — which we call ‘CosmIn’ — will be a finite 
constant, say N(a�, aQG) ≡ Ic . This, in turn, requires ρ + 3p = 0
at a = a� with ρ + 3p < 0 for a > a� . The finiteness of CosmIn thus 
demands that we must have an accelerating phase in the universe.

The simplest way to ensure that (ρ + 3p) < 0 at late times 
without invoking untested physics (like e.g., quintessence) is to in-
troduce a non-zero cosmological constant, with energy density ρ� . 
The expansion of such a universe, for a > aQG, is driven by the 
energy density of matter ρm ∝ a−3, radiation ρR ∝ a−4 and the 
cosmological constant ρ� . Defining the density ρeq ≡ ρ4

m(a)/ρ3
R(a)

which is a constant independent of a, we can model the universe 
as a dynamical system described by three densities: (ρQG, ρeq, ρ�).

Observations indicate that ρeq = [0.86 ± 0.09 eV]4 and ρ� =
[(2.26 ± 0.05) × 10−3 eV]4. The theoretical status of these nu-

merical values of ρeq and ρ� are very different. The value of ρeq
depends on the nature and abundance of dark matter and baryons 
relative to photons and — in principle — can be determined from 
high-energy physics. But, as is well-known, we do not have any 
theoretical basis to determine ρ� which is considered a major 
challenge in theoretical physics.

However, in our approach, the value of ρ� is determined by 
the value of N(a�, aQG) ≡ Ic . The calculation of Ic is completely 
straightforward but a bit tedious. (See Appendix C of [3] for de-
tails.) The final result is given by:

Ic = − 2

3π
ln

[
k1(ρ

2
�ρeq)

1/12

EQG

]
(2)

where k1 = (31/2/21/3)(8π/3)1/4 ≈ 2.34. Inverting this equation, 
we can express the cosmological constant in terms of Ic , ν, ρeq as:

ρ�L4
P = 4

27

(
3

8π

)3/2 1

ν6(ρeqL4
P )1/2

exp (−9π Ic) (3)

As claimed earlier, the non-zero value of the cosmological constant 
is related to the finite value of Ic . The fact that even an eternal 
observer can only access a finite amount of information (quantified 
in terms of the number of modes which cross the Hubble radius) 
implies that the cosmological constant is non-zero; we see that 
ρ� → 0 when Ic → ∞ and vice-versa.

If Ic is known from an independent consideration, Eq. (3) will 
determine the numerical value of the cosmological constant in 
terms of (ρeq, ρQG). To have an independent handle on Ic , we 
consider some well-established results which are fairly indepen-
dent of the choice of model of quantum gravity. One such result 
is that the effective dimension of the quantum-corrected spacetime be-
comes D = 2 close to Planck scales, independent of the original D . 
This result was obtained, in a fairly model-independent manner 
(using a renormalized quantum effective metric) in Ref. [4]. Similar 
results have been established earlier by several authors (for a sam-
ple, see e.g., [5]) in a number of approaches to quantum gravity. 
This, in turn, implies that [4,6] the unit of information associated 
with a quantum gravitational 2-sphere of radius L P can be taken 
to be IQG = 4π L2

P /L2
P = 4π . We shall therefore introduce the pos-

tulate that:

Ic = N(a�,aQG) = 4π (4)

We view this relation as a relic of the pre-geometric phase de-
scribed by quantum gravitational considerations. While it suggests 
the notion of a “single Planckian sphere” from which the cosmo-
genesis started, it is not possible to model such an idea rigorously, 
given our current ignorance of quantum gravity and cosmogene-
sis. What is actually being postulated — and what is sufficient for our 
purpose, independent of the details of the model — is that the informa-
tion content, as measured by CosmIn, N(a�, aQG), is equal to the 
information contained in the two dimensional surface of a Planck-
ian sphere, viz. 4π . As long as the cosmogenesis model maintains 
this equality of information, our results will follow. With this con-
sideration, Ic = 4π and we obtain

ρ�L4
P = 4

27

(
3

8π

)3/2 1

ν6(ρeqL4
P )1/2

exp
(
−36π2

)
(5)

Given the scale EQG = ν−1 E P at which classical geometry arises 
from quantum pre-geometry, the above equation determines ρ� . 
At this stage, we can also reverse the argument and use the ob-
served value of ρ� to determine the factor ν . Using the result 
ρ�L4

P = (1.14 ±0.09) ×10−123 and ρeq L4
P = (2.41 ±1.01) ×10−113, 

we find that ν = (6.2 ± 0.3) × 103 making EQG close to the GUTs 



Download English Version:

https://daneshyari.com/en/article/5494740

Download Persian Version:

https://daneshyari.com/article/5494740

Daneshyari.com

https://daneshyari.com/en/article/5494740
https://daneshyari.com/article/5494740
https://daneshyari.com

