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We establish a relation between the equation of state of nuclear matter and the fourth-order 
symmetry energy asym,4(A) of finite nuclei in a semi-empirical nuclear mass formula by self-consistently 
considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us 
to extract information on nuclear matter fourth-order symmetry energy Esym,4(ρ0) at normal nuclear 
density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4(A) via the 
double difference of the “experimental” symmetry energy extracted from nuclear masses, for the first 
time, we estimate a value of Esym,4(ρ0) = 20.0 ± 4.6 MeV. Such a value of Esym,4(ρ0) is significantly 
larger than the predictions from mean-field models and thus suggests the importance of considering the 
effects of beyond the mean-field approximation in nuclear matter calculations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The determination of the isospin dependent part of nuclear 
matter equation of state (EOS) has become a hot topic in both 
nuclear physics and astrophysics during the last decades [1–12]. 
The nuclear matter EOS tells us its energy per nucleon E(ρ, δ)
as a function of density ρ = ρn + ρp and isospin asymmetry 
δ = (ρn − ρp)/ρ with ρn (ρp) being the neutron (proton) density. 
The parabolic approximation to nuclear matter EOS, i.e., E(ρ, δ) ≈
E(ρ, δ = 0) + Esym(ρ)δ2, is adopted widely with the symmetry 
energy defined as Esym(ρ) = 1

2!
∂2 E(ρ,δ)

∂δ2

∣∣
δ=0. The feasibility of the 

parabolic approximation is practically justified in various aspects 
of nuclear physics, especially in finite nuclei where the δ2 value is 
usually significantly less than one. Nevertheless, in neutron stars 
where the δ could be close to one, a sizable higher-order terms 
of isospin dependent part of nuclear matter EOS, e.g., the term 
Esym,4(ρ)δ4 with the fourth-order symmetry energy defined as 
Esym,4(ρ) = 1

4!
∂4 E(ρ,δ)

∂δ4

∣∣
δ=0, may have substantial effects on the 

properties such as the proton fraction at beta-equilibrium, the 
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core-crust transition density and the critical density for the direct 
URCA process [13–17].

To the best of our knowledge, unfortunately, there is so far 
essentially no experimental information on the magnitude of 
Esym,4(ρ), even at normal nuclear density ρ0. Theoretically, the 
mean-field models generally predict the magnitude of Esym,4(ρ0)

is less than 2 MeV [16,18–20]. A value of Esym,4(ρ0) = 1.5 MeV
is obtained from chiral pion–nucleon dynamics [21]. The recent 
study [22] within the quantum molecular dynamics (QMD) model 
indicates that the Esym,4(ρ0) could be as large as 3.27 ∼ 12.7 MeV
depending on the interactions used. Based on an interacting Fermi 
gas model, a significant value of 7.18 ± 2.52 MeV [23] is pre-
dicted for the kinetic part of Esym,4(ρ0) by considering the high-
momentum tail [24] in the single-nucleon momentum distribu-
tions that could be due to short-range correlations of nucleon–
nucleon interactions. In addition, the divergence of the isospin-
asymmetry expansion of nuclear matter EOS in many-body pertur-
bation theory is discussed in Refs. [21,25]. Therefore, the magni-
tude of Esym,4(ρ0) is currently largely uncertain and it is of critical 
importance to obtain some experimental or empirical information 
on Esym,4(ρ0).

Conventionally nuclear matter EOS is quantitatively character-
ized in terms of a few characteristic coefficients through Taylor 
expansion in density at ρ0, e.g., E(ρ, δ = 0) = E0(ρ0) + 1

2! K0χ
2 +

1
3! J0χ

3 + O(χ4) and Esym(ρ) = Esym(ρ0) + Lχ + 1
2! Ksymχ2 +
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O(χ3) with χ = ρ−ρ0
3ρ0

. The density in the interior of heavy nuclei 
is believed to nicely approximate to saturation density of symmet-
ric nuclear matter (nuclear normal density) ρ0 and the empirical 
value of ρ0 ≈ 0.16 fm−3 has been obtained from measurements 
on electron or nucleon scattering off heavy nuclei [26]. Our knowl-
edge on nuclear matter EOS largely stems from nuclear masses 
based on various nuclear mass formulae. By analyzing the data 
on nuclear masses with various nuclear mass formulae (see, e.g., 
Ref. [27]), consensus has been reached on E0(ρ0) and Esym(ρ0)

with E0(ρ0) ≈ −16.0 MeV and Esym(ρ0) ≈ 32.0 MeV. These em-
pirical values on E0(ρ0) and Esym(ρ0) are of critical importance 
for our understanding on nuclear matter EOS.

Generally speaking, it is very hard to determine the higher-
order parameter Esym,4(ρ0) and the fourth-order symmetry energy 
asym,4(A) of finite nuclei from simply fitting nuclear masses within 
nuclear mass formulae since the term asym,4(A)I4 (I = N−Z

A with 
N and Z being the neutron and proton number, respectively, and 
A = N + Z is mass number) is considerably small compared to 
other lower-order terms in the mass formula for known nuclei, 
even for the predicted dripline nuclei [28]. Recently, however, by 
approximating asym,4(A) to a constant csym,4 in the mass formula, 
several studies [29–32] have been performed to extract csym,4 from 
analyzing the double difference of the “experimental” symmetry 
energy extracted from nuclear mass data, and robust results with 
high precision have been obtained, i.e., a sizable positive value 
of csym,4 = 3.28 ± 0.50 MeV or 8.47 ± 0.49 MeV is obtained in 
Ref. [29], depending on the Wigner term form in the mass formula. 
More recently, a value of csym,4 = 8.33 ± 1.21 MeV is extracted in 
Ref. [32] using similar analysis on nuclear masses. These results 
provide the possibility to extract information on Esym,4(ρ0).

In this work, by self-consistently considering the bulk, surface 
and Coulomb contributions to the nuclear mass, we extend the 
mass formula of Ref. [33] to additionally include the corrections 
due to central density variation of finite nuclei and the higher-
order fourth-order symmetry energy term asym,4(A)I4. In this ex-
tended mass formula, a explicit relation between asym,4(A) and 
Esym,4(ρ0) is obtained. We demonstrate for the first time that 
the precise value of csym,4 obtained recently from nuclear mass 
analysis allows us to estimate a value of Esym,4(ρ0) = 20.0 ±
4.6 MeV.

2. Nuclear mass formula

There have been a number of nuclear mass models which aim 
to describe the experimental nuclear mass database and predict 
the mass of unknown nuclei. Nowadays, some sophisticated mass 
formulae [27,35–37] (with shell and pairing corrections) can re-
produce the measured masses of more than 2000 nuclei with a 
root-mean-square deviation of merely several hundred keVs. These 
mass formulae provide us empirical information about the EOS of 
nuclear matter, especially its lower-order characteristic parameters 
E0(ρ0), Esym(ρ0) and so forth.

To relate the coefficients in the mass formula to the EOS of 
nuclear matter, one can express the binding energy B(N, Z) of 
a nucleus with N neutrons and Z protons in terms of the bulk 
energy of nuclear matter in the interior of the nucleus plus sur-
face corrections and Coulomb energy. Based on such an argument, 
Danielewicz [33] developed a mass formula with a self-consistent 
A-dependent symmetry energy asym(A) of finite nuclei. Consider-
ing that the central density ρcen in nuclei generally depends on N
and Z and deviates from ρ0, we here extend the mass formula of 
Ref. [33] by considering the deviation of ρcen from ρ0, and addi-
tionally including the higher-order I4 terms. In such a framework, 

a nucleus with N neutrons and Z protons is assumed to localize 
inside an effective sharp radius R , i.e.,

R = r0
[
1 + 3χcen(N, Z)

]−1/3
A1/3, (1)

where r0 is a constant satisfying 4
3 πρ0r3

0 = 1 and χcen = (ρcen −
ρ0)/3ρ0 is a dimensionless variable characterizing the deviation of 
ρcen from ρ0. Furthermore, we denote the volume (surface) neu-
tron excess as �v = Nv − Zv (�s = Ns − Zs), where Nv (Zv) and 
Ns (Zs) represent the neutron (proton) number in the volume and 
surface regions of the nucleus, respectively, with Nv + Ns = N and 
Zv + Zs = Z . Generally, χcen and �v (�s) depend on N and Z of 
the nucleus and can be determined from equilibrium conditions, 
and this is consistent with the argument of the droplet model (see, 
e.g., Ref. [34]).

In the present work, the nuclear binding energy consists of vol-
ume term Bv, surface term Bs and Coulomb term Bc. The volume 
part of the binding energy can be treated in nuclear matter ap-
proximation, i.e.,

Bv ≈ A
[

E0(ρ0) + 1

2
K0χ

2
cen + Esym(ρ0)

(�v

A

)2

+ Lχcen
(�v

A

)2 + Esym,4(ρ0)
(�v

A

)4
]
.

(2)

The surface term comes from surface tension and symmetry po-
tential (detailed argument can be found in Ref. [33]), and it can be 
expressed as

Bs =
[
σ0 − σI

(�s

S

)2
]

4π R2 + 2σI

4π R2
�2

s

≈ Es0(1 − 2χcen)A
2
3 + β(1 + 2χcen)A

4
3
(�s

A

)2
, (3)

where σ0 (σI) represents the isospin independent (dependent) sur-
face tension, S = 4π R2 is the surface area of the nucleus, and we 
define Es0 = 4πr2

0σ0 and β = σI
4πr2

0
. Eq. (1) has been used to obtain 

the second line in Eq. (3). For Coulomb energy, for simplicity we 
adopt the following simple form without exchange term, i.e.,

Bc = 3

5

e2

4πε0

1

R
Z 2 ≈ ac A−1/3 Z 2(1 + χcen), (4)

with ac = 3
5

e2

4πε0r0
.

The equilibrium condition of nuclei can be obtained from vari-
ations of the binding energy B(N, Z) of the nucleus with respect 
to χcen and �v, i.e.,

∂ B(N, Z)

∂χcen
= 0,

∂ B(N, Z)

∂�v
= 0, (5)

from which we can obtain χcen and �v (�s) for different A and Z . 
The first equation means the mechanical equilibrium and tells us 
how the surface energy, Coulomb energy and the isospin depen-
dent part of volume energy affect the value of ρcen, while the 
second equation represents the balance of the isospin asymmetry 
chemical potential between the volume and surface regions.

To solve Eq. (5), we expand χcen in terms of �v
A , and then ex-

pand (�v
A )2 in terms of I , i.e.,

χcen = χ0 + χ2
(�v

A

)2 +O
[(�v

A

)4
]
, (6)

(�v

A

)2 = D2 I2 +O(I4), (7)

where the expansion coefficients χ0, χ2 and D2 might depend on 
A or Z , consistent with calculations from the droplet model [34]
and the Thomas–Fermi approximation [38]. Using Eqs. (2), (3) and 
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