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We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This 
model has been extensively studied in the past. If the scalar couples to the dark matter in a parity 
conserving manner then dark matter annihilation to two mediators is dominated by the P -wave channel 
and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy 
of the Cosmic Microwave Background is usually thought to be absent in the model because of this 
suppression. In this letter we show that dark matter annihilation via bound state formation occurs 
through the S-wave and hence there is a constraint on the parameter space of the model from the 
Cosmic Microwave Background.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Standard Model (SM) has no acceptable dark matter (DM) 
candidate. As its name implies DM must be uncharged and various 
direct detection as well as astrophysical and cosmological con-
straints exist on its couplings to ordinary matter as well as its self 
interactions. These constraints motivate a class of very simple ex-
tensions of the SM that contain a dark sector with particles that 
carry no SM gauge quantum numbers. For thermal DM the mini-
mal dark sector model consists of the DM and a mediator that the 
DM annihilates into in the early universe. There are various possi-
bilities for the Lorentz quantum numbers of the DM and mediator. 
Two well studied examples are a Dirac fermion with a mediator 
that is either a new massive U (1)D gauge boson (the dark photon) 
or a massive scalar. In the first case communication with the SM 
degrees of freedom occurs through the vector portal (via kinetic 
mixing between the U (1)D and U (1)Y field strength tensors) and 
in the latter case through the Higgs portal.

Constraints on the parameter space of these models occur from 
the so-called indirect detection signals. Annihilation of DM in the 
early universe at the time of recombination injects energy into 
the plasma of SM particles elongating the recombination process 
and changing expectations for the cosmic microwave background 
(CMB) radiation anisotropy. Annihilation of DM today in our galaxy 
contributes to electromagnetic and charged particle astrophysical 
spectra observed, for example, by the Fermi satellite.
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In a recent paper [1], we have highlighted the role that DM 
bound state formation can play on indirect detection signals from 
DM annihilation in our galaxy when the mediator is a dark photon 
(there bound state formation was not important for the CMB con-
straint). In this letter, we again consider the influence of DM bound 
state formation on indirect signals but focus on the case where the 
mediator is a real scalar and on the CMB constraint. We impose a 
parity symmetry on the dark sector with the real scalar mediator 
having even parity. Then, the Lagrange density for the DM sector 
is,

L = iχ̄γ μ∂μχ − mD χ̄χ − gχ̄χφ + 1

2
∂μφ∂μφ − 1

2
m2

φφ2 , (1)

where χ and φ are the DM and the dark mediator and the Higgs 
portal couplings are omitted. This model has been well studied for 
various reasons [2–19]. For DM heavier than 5–10 GeV, direct de-
tection experiments [20] and the requirement that φ decays before 
BBN set the lower bound, mφ > 2mμ � 0.2 GeV. In our calcula-
tions below, we assume a thermal DM relic density, which fixes 
the value of αD = g2/(4π) as a function of the DM mass, mD .

The most often considered DM annihilation process in this 
model is χχ̄ → φφ. The parity of a 2φ system must be even 
and so does the χχ̄ system because parity is conserved by the 
Lagrange density in Eq. (1). Therefore this annihilation is mostly 
P -wave for slow DM and anti-DM particles.1 With the P -wave 

1 If parity was not conserved S-wave annihilation would be possible.
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Fig. 1. DM relative velocity dependence in various cross sections. The black curve 
is the p-wave direct annihilation cross section for χχ̄ → φφ . The red curve is the 
(χχ̄) bound state formation cross section via monopole transition, evaluated nu-
merically using Eqs. (4) and (5). The blue curve stands for quadrupole transition 
counterpart. The brown line is the monopole transition cross section in the Coulomb 
limit, while the green curve is based on the Hulthén potential which gives a quite 
good approximation to the realistic Yukawa potential. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of 
this article.)

Sommerfeld enhancement factor [21] included, the cross section 
times velocity can be written as

(σ v)P -wave
A = 3πα2

D v2

8m2
D

×
∣∣∣∣∣
√

3

4π p2

dR p1

dr
(r = 0)

∣∣∣∣∣
2

, (2)

where p = mD v/2, v is the relative velocity. R p	 is defined as the 
radial part of the initial scattering wave function (with the relative 
momentum aligned along the z-axis), 
�p=pẑ(�r) =

∑
	 R p	(r)Y	0(r̂), 

and 
�p(�r) is asymptotic to exp(i�p · �r) at infinity. A typical curve 
of (σ v)P -wave

A as a function of v is the black curve in Fig. 1. As 
v gets smaller, (σ v)P -wave

A first grows as 1/v due to the Sommer-
feld enhancement, and then at around v ∼ mφ/mD , (σ v)P -wave

A gets 
strongly suppressed. The drop-off is due to the effective potential 
barrier at r ∼ m−1

φ generated by the sum of the attractive Yukawa 
potential and the repulsive centrifugal potential. The transmission 
coefficient for tunneling through the barrier diminishes as v2 in 
the small v limit, as illustrated by Fig. 1.

After thermal freeze out (chemical decoupling), DM can still 
maintain kinetic equilibrium with the φ particles in the universe. 
The DM velocity only red-shifts linearly with the expansion af-
ter the kinetic decoupling. For DM mass in the TeV range, their 
relative velocity v during recombination is extremely small, v �√

Trec/mD ∼ 10−6, where Trec is the temperature of the universe 
at the recombination era. Hence it has been thought that there 
will be no CMB constraint for the P -wave annihilating DM in this 
model. In this letter, we show that this is not the case. In some re-
gions of parameter space, a pair of free DM particles can capture 
into a DM bound state via the emission of a φ particle, and then 
annihilate into φ’s inside the bound state. The bound state forma-
tion process dominantly occurs in an S-wave and therefore is not 
suppressed at low velocity due to the absence of the centrifugal 
potential barrier. The mediator eventually decays to SM particles 
via the Higgs portal resulting in a CMB constraint on the region of 
the parameter space in the model where the kinematics allows for 
bound state formation.

2. Bound state formation cross section

The Hamiltonian for a non-relativistic DM–anti-DM system in-
teracting with the mediator field is (in the center of mass frame)

H int = g
[
φ

(�r/2
) + φ

(−�r/2
)]

−g
[
φ

(�r/2
) + φ

(−�r/2
)] ∇2

2m2
D

, (3)

where g is the dark Yukawa coupling. �r is the relative position 
of the DM-and-anti-DM particles, and φ is the Schrödinger picture 
mediator field. In the bound state formation transition amplitude a 
mediator particle is created by the field φ. The mode expansion of 
the mediator field has exponential dependence on the wave-vector 
�k that can be expanded, e±i�k·�r/2 = 1 ± i�k · �r/2 − (�k · �r)2/8 + · · · . In 
the first line of Eq. (3), due to the orthogonality between the initial 
and final states, the leading order contribution vanishes. The con-
tributions at the i�k · �r order from DM and anti-DM cancel with 
each other. The contribution from the (�k · �r)2 order yields both 
monopole and quadrupole transitions. The second line of Eq. (3)
represents the leading relativistic correction, which contributes to 
the monopole transition at the zeroth order in �k · �r.

The bound state formation cross section times the relative ve-
locity can be written as

σ v =
∑

f

∑
M=M,Q

∫
d3�k

(2π)32k0
(2π)δ(E f + k0 − Ei)|V M

f i |2 , (4)

where Ei and E f are the energies of the initial and final states of 
the DM–anti-DM system. The sum over f is over final bound state 
azimuthal, magnetic, and principal quantum numbers, but because 
we have aligned the dark matter relative momentum along the 
z-axis only the magnetic quantum number m = 0 contributes. Here 
we are neglecting the spin degrees of freedom for the dark matter. 
Including them would give a factor of 1/4 from spin averaging and 
then for each f = n, l, m there would be four final bound states; 
one with spin 0 and three with spin 1.

For the monopole (M) transition,

|V M
f i |2 = g2
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∫

drr2
[

1

12
k2r2 + αD e−mφr

mDr

]
Rn	(r)R p	(r)

∣∣∣∣
2

, (5)

where k ≡ |�k|, Rk	 and Rn	 are the initial and final radial wave 
functions. For quadrupole transition,

|V Q
f i |2 = g2k4

120
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. (6)

During the time of recombination the DM and anti-DM parti-
cles have negligible kinetic energy, hence to emit an on-shell φ, 
mφ < α2

DmD/(4n2) is required in the Coulomb limit. This indi-
cates mφ � αDmD/(2n). Therefore, the relevant bound state wave 
functions can be treated as Coulombic for the computation of 
the bound state formation cross section. On the other hand, we 
solve for the scattering state wave functions numerically using the 
shooting method described in [1].

From numerical solutions, we find that after summing over 
the azimuthal quantum number 	, for both the monopole and 
quadrupole transitions, (σ v) ∼ n−2 roughly. For mD = 5.0 TeV, 
αD = 0.27, mφ = 0.8 GeV, the numerical solution of total cross sec-
tions times velocity for the monopole and quadrupole transitions 
are shown as the red and blue curves in Fig. 1 respectively.

For v > mφ/mD , σ v goes like v−1 and agrees with the result 
from the Coulomb potential scattering states which is shown by 
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