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We bring the concept that quantum symmetries describe theories with nontrivial momentum space 
properties one step further, looking at quantum symmetries of spacetime in presence of a nonvanish-
ing cosmological constant �. In particular, the momentum space associated to the κ-deformation of the 
de Sitter algebra in (1 + 1) and (2 + 1) dimensions is explicitly constructed as a dual Poisson–Lie group 
manifold parametrized by �. Such momentum space includes both the momenta associated to spacetime 
translations and the ‘hyperbolic’ momenta associated to boost transformations, and has the geometry 
of (half of) a de Sitter manifold. Known results for the momentum space of the κ-Poincaré algebra are 
smoothly recovered in the limit � → 0, where hyperbolic momenta decouple from translational mo-
menta. The approach here presented is general and can be applied to other quantum deformations of 
kinematical symmetries, including (3 + 1)-dimensional ones.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent developments in quantum gravity research have revived 
and given new substance to the long-forgotten idea that momen-
tum space should have a nontrivial geometry, an intuition origi-
nally due to Max Born [1]. After more than a decade since De-
formed Special Relativity (DSR) was first proposed [2,3], it is now 
understood that a nontrivial geometry of momentum space is a 
general feature of DSR theories [4–8]. This is intimately related 
with the presence of the Planck energy as a second relativistic in-
variant (besides the speed of light), that can play the role of a 
curvature scale of the momentum manifold [9]. Nontrivial prop-
erties of momentum space emerge also in (2 + 1)-dimensional 
quantum gravity, where explicit computations show that the ef-
fective description of quantum gravity coupled to point particles is 
given by a theory with curved momentum space and noncommu-
tative spacetime coordinates [10–13]. Of more direct interest for 
the results we are going to present here are models of noncom-
mutative geometry, where the space of momenta that are dual to 
the noncommutative spacetime coordinates is curved [14–17].
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Besides finding increasing theoretical support, Planck-scale 
modifications of the geometry of momentum space are extremely 
relevant from a phenomenological point of view. In fact, features 
due to curvature of momentum space are dual to those that in 
general relativity are ascribed to curvature of spacetime: in the 
same way as spacetime curvature induces redshift of energy, cur-
vature of momentum space induces a dual redshift, that is, an 
energy-dependent correction to the time of flight of free par-
ticles [18]. Such effects open up a much needed observational 
window for Planck-scale physics, since they are testable with as-
trophysical observations [19].

Despite the recent significant theoretical and phenomenological 
progress just discussed, an important ingredient which is neces-
sary to connect the properties of momentum space to observations 
is still missing. In fact, all of the models mentioned above are 
essentially deformations of special relativity: even though space-
time might be nontrivial (e.g. spacetime coordinates might not 
commute), still it has vanishing curvature. This is clearly a phe-
nomenological shortcoming, since the most promising observations 
involve propagation of particles over cosmological distances, for 
which spacetime curvature cannot be neglected [20]. In the past 
few years several proposals aimed at extending relativistic mod-
els with curved momentum space were put forward in order to 
include nonvanishing spacetime curvature. The first concrete ap-
proach [21] focussed on constructing an extension of the Poincaré 
algebra that includes both the Planck scale and a (constant) space-
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time curvature scale as relativistic invariants. The resulting algebra 
can be seen as a DSR version of the de Sitter (hereafter dS) algebra 
of symmetries, but the associated coalgebra was not investigated. 
Other proposals focussed on developing a unifying description of 
the whole phase space of free particles moving on a curved space-
time with deformed local Poincaré symmetries [22–26]. The gen-
eral understanding coming from these approaches is that when 
both momentum space and spacetime have nonvanishing curva-
ture they become so intertwined that it is not possible to give a 
neat geometrical description of the properties of momentum space 
on its own.

In this work we show that this is not necessarily the case. In-
deed, we are able to explicitly construct the curved momentum 
space generated by quantum-deformed spacetime symmetries in 
presence of a nonvanishing cosmological constant. We achieve this 
result by enlarging the momentum space so that it is not only the 
manifold of momenta associated to translations on spacetime, but 
it also includes the ‘hyperbolic’ momenta associated to the boost 
transformations and the angular momenta associated to rotations. 
Within this construction we can also show that in the vanish-
ing cosmological constant limit the Lorentz sector is not needed 
because it decouples from the energy–momentum sector, thus re-
covering previous results in the literature.

While we would like to argue that our results are general, we 
use the setting of Hopf algebras to present an explicit deriva-
tion. Hopf algebras have proved to be a very useful mathematical 
framework to model DSR effects. The most studied example is the 
κ-Poincaré Hopf algebra [27–29], the investigation of which pro-
vided inspiration and more precise understanding of several fea-
tures of DSR models. For example, it can be explicitly shown that 
the manifold of momenta associated to the κ-Poincaré translation 
generators is a (portion of a) dS manifold, whose curvature is de-
termined by the quantum deformation scale κ [17,30] and whose 
metric determines the free particle dispersion relation that is in-
deed compatible with the κ-Poincaré symmetries, thus showing 
that the phenomenology associated to the κ-Poincaré algebra fits 
very naturally within the framework of relative locality [17,31].

Here we present a generalization of all these results by working 
with the κ-deformation of the dS algebra (see [32–38]). The name 
is due to the fact that in the limit of vanishing cosmological con-
stant � one recovers the κ-Poincaré algebra, while in the limit of 
vanishing quantum deformation parameter z = 1/κ one recovers 
the algebra of symmetries of the dS spacetime. It is worth noticing 
that it was exactly using this Hopf algebra that the first pioneer-
ing investigations concerning the interplay between spacetime and 
momentum space curvature were undertaken [39].

The Poisson version of the κ-dS Hopf algebra in (1 + 1) and in 
(2 + 1) dimensions is defined in section 2, where it is shown that 
the main differences with respect to the corresponding κ-Poincaré 
structures fully arise in the (2 + 1) setting: whilst in the vanishing 
cosmological constant limit the translation generators {P0, P1, P2}
close a Hopf subalgebra, this is no longer the case for the κ-dS al-
gebra, since the cosmological constant mixes the translation and 
Lorentz sectors within both the coproduct map and the deformed 
Casimir function. Thus, for nonvanishing � it seems natural to con-
sider an enlarged momentum space including also the dual coor-
dinates to the Lorentz generators. This idea allows us to construct 
the curved (generalized) momentum manifold in the nonvanishing 
cosmological constant setting as the full dual Poisson–Lie group 
manifold, whose explicit construction can be achieved through the 
Poisson version of the ‘quantum duality principle’ (see [40–43] and 
references therein).

The κ-dS dual Poisson–Lie groups are explicitly constructed in 
section 3. In (1 + 1) dimensions the dual group coordinates are 
those associated to both the spacetime translations and boosts, 

and a certain linear action of the dual group on the origin of mo-
mentum space generates (half of) a (2 + 1)-dimensional dS man-
ifold MdS3 , spanned by the orbit of the group passing through 
the origin. In this case, the fact that boosts have the same role 
in the momentum space as translation generators can be under-
stood since their coproducts have the same formal structure. In 
(2 + 1) dimensions one spatial rotation comes into play and the 
structure of the κ-dS Hopf algebra is apparently much more in-
volved. Nevertheless, the construction of the full dual Poisson–Lie 
group G∗

� gives the clue for the full geometrical description of the 
associated momentum space. The dual Lie algebra and its asso-
ciated Poisson–Lie group are explicitly constructed in section 3.2, 
and the corresponding linear action on the enlarged momentum 
space can be defined in such a way that the dual rotation gener-
ates the isotropy subgroup of the origin of the momentum space. 
As a consequence, we find that a (4 + 1)-dimensional space of mo-
menta associated to translations and boosts arises as a dual group 
orbit passing through the origin, and such a space again has the 
geometry of (half of) a dS manifold MdS5 . Moreover, in the van-
ishing cosmological constant limit, the Lorentz sector completely 
decouples both in the dispersion relation and in the coproduct, 
thus recovering the well-known κ-Poincaré momentum space. The 
paper ends with a concluding section in which the applicability 
of the method here presented to the construction of the κ-AdS 
momentum space is shown, and the keystones for solving the cor-
responding (3 + 1)-dimensional problem are presented.

2. The κ-dS Poisson–Hopf algebra

Let us start by reviewing the structural properties of the 
κ-deformation of the (1 + 1) and (2 + 1) dS algebra, which will be 
presented by considering the cosmological constant � > 0 as an 
explicit parameter whose � → 0 limit provides automatically the 
expressions for the κ-Poincaré algebra. In this way, the specific 
features of the construction leading to the κ-Poincaré momen-
tum space will become transparent, and the proposed path to its 
nonvanishing cosmological constant generalization will arise in a 
natural way.

In the subsection on the (1 + 1)-dimensional case we just 
briefly present the essential formulas, postponing a more in-depth 
discussion of the relevant features of the κ-dS algebra to the fol-
lowing subsection focussing on the (2 + 1)-dimensional case.

2.1. The (1 + 1) κ-dS algebra

The (undeformed) Poisson–Hopf dS algebra in (1 + 1) dimen-
sions is defined by the brackets

{K , P0} = P1, {K , P1} = P0, {P0, P1} = −� K , (1)

where K is the generator of boost transformations, P0 and P1 are 
the time and space translation generators and the (undeformed) 
coproduct is given by �0(X) = X ⊗1 +1 ⊗ X , with X ∈ {K , P0, P1}. 
The Poisson version of the (1 + 1) κ-dS quantum algebra [34] is a 
Hopf algebra deformation of (1), given by

{K , P0} = P1, {K , P1} = sinh (zP0)

z
, {P0, P1} = −� K ,

(2)

with deformed coproduct map

�(P0) = P0 ⊗ 1 + 1 ⊗ P0,

�(P1) = P1 ⊗ e
z
2 P0 + e− z

2 P0 ⊗ P1, (3)

�(K ) = K ⊗ e
z
2 P0 + e− z

2 P0 ⊗ K .
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