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We investigate Casimir effect as well as thermal Casimir effect for a pair of parallel perfectly plates 
placed in general stationary space–time background. It is found that the Casimir energy is influenced 
by the 00-component of metric and the corresponding quantity in dragging frame. We give a scheme 
to renormalize thermal correction to free energy in curved space–time. It is shown that the thermal 
corrections to Casimir thermodynamic quantities not only depend on the proper temperature and proper 
geometrical parameters of the plates, but also on the determinant of space–time metric.
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The Casimir effect [1] is one of the most interesting conse-
quences of vacuum fluctuations predicted by quantum field theory. 
It is originally expressed as the attraction between two neutral, 
perfectly conducting plates in vacuum. In classical electrodynam-
ics, there should be no force between neutral plates. But the quite 
remarkable result actually depends on Planck’s constant. Therefore, 
this effect is a purely quantum effect, and results from the restric-
tion of allowed modes in vacuum between the boundaries.

The past few years have seen spectacular developments in 
Casimir effect, both theoretically and experimentally [2]. Space–
time with nontrivial topology, is also new element which has been 
taken into account [3,4]. Though no material boundaries exist, the 
identification conditions induced by space–time topology restrict 
the quantum fields modes. Following this line, lots of investiga-
tions had been performed on the plates in non-Euclidean topology 
space–time [5–7].

Recently, some authors have investigated the Casimir effect un-
der the influence of weak gravitational fields [8–14]. Particularly 
in [10], the Casimir vacuum energy density between plates in a 
slightly curved, static space–time background was studied. Then 
in the weak field approximation, Bezerra et al. [13] investigated 
the renormalized vacuum energy density in the plates which were 
placed near the surface of a rotating spherical gravitational source. 
Relaxing the assumption of weak field approximation, the vacuum 
energy in the cavity moving in a circular equatorial orbit in the 

E-mail address: awzhang@sjtu.edu.cn.

exact Kerr space–time geometry was evaluated [15]. And then the 
thermal corrections in such a case were calculated [16].

The main purpose of this article is to generalize the results in 
[10,13,15,16] to a more general case: stationary space–time. We 
will theoretically analyze the general properties of Casimir energy 
as well as thermal corrections for cavity in such a general space–
time. Besides, we will give another renormalization scheme for 
Casimir thermal corrections in curved space–time.

We start by defining a local Cartesian coordinate frame (x, y, z) 
attached to a pair of parallel perfectly conducting plates separated 
by a distance L, with z axis being perpendicular to the plates and 
the origin located at the center of the apparatus. In such a local 
frame, the general stationary space–time background metric can 
be written as

ds2 = g00(z)dt2 + g11(z)dx2 + g22(z)dy2 + g33(z)dz2

+ 2g03(z)dtdz. (1)

As a preliminary attempt, we only consider the case that the met-
ric is dependent on coordinate z. It can be seen that this metric 
possesses ∂t , ∂x, ∂y as killing vector, so the massless scalar field 
confined in the plates has the form1

φn = Nn exp(−iωnt + ikxx + iky y) sin

(
nπ

L
z

)
f (z), (2)

1 Throughout the text, the natural units will be used.
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where Nn is a normalization constant, the sine function stems from 
standing-wave condition and Dirichlet boundary condition which 
requires the φn to be zero at the boundaries of the plates, and 
f (z) is an unknown function of z which can be solved by using 
Klein–Gordon equation

1√−g(z)
∂μ[√−g(z)gμν(z)∂ν ]φn = 0 (3)

with g(z) = det(gμν(z)). After some calculations, we can have 
f (z) = exp(iωn g03/g33) and

ωn =
√

g332

g032 − g00 g33

√
g11

g33
k2

x + g22

g33
k2

y +
(

nπ

L

)2

. (4)

Note that for simplicity, we have taken the approximation´ L/2
−L/2 kzdz ≈ kz L in standing-wave condition and ∂z(

√−g(z)×
g3ν(z)) ≈ 0 in Klein–Gordon equation. These approximations can 
be fulfilled when the metric is independent of coordinate z or the 
distance L between the plates is very small [15] so that we only 
need expand gμν(z) to zero order gμν(0).2 Actually the separa-
tion between plates is on atomic or subatomic scale and when 
L = 1μm, the plates is separated relatively large [2]. Thus the 
above calculations are valid in zero-order approximation for re-
alistic plates in the curved space–time background (1).

The parameter Nn can be obtained from the scalar product [17]

(φn, φm) = i

ˆ

�

[(∂μφn)φ
∗
m − φn(∂μφ∗

m)]√gsn
μd�, (5)

where gs = −g/g00 is the determinant of the induced metric on 
space-like hypersurface �, nμ is a time-like unit vector and in 
our case it is (

√
g00, 0, 0, −g03

√
g00/g33). Then from orthogonality 

condition, we arrive at

N2
n = g00

√−g00 g11 g22 g33

−g(2π)2Lωn
. (6)

Here we have used the following relations:

−g = g11 g22(g2
03 − g00 g33), g00 = −g33

g2
03 − g00 g33

, g11 = 1

g11
,

g22 = 1

g22
, g33 = −g00

g2
03 − g00 g33

, g03 = g03

g2
03 − g00 g33

. (7)

Now we proceed to investigate Casimir energy in the cavity 
which should take the form

E0 =
ˆ

V

〈0|Tμν |0〉UμUν√
gsdV , (8)

in which Uμ is the 4-velocity of observer and it is (1/
√

g00, 0, 0, 0)

for static observer located at coordinate origin, 〈0|Tμν |0〉 is the 
expected value of energy–momentum tensor and its 00-component 
reads

〈0|T00|0〉 =
∑

n

¨
(∂tφn∂tφ

∗
n − 1

2
g00 gμν∂μφn∂νφ∗

n )dkxdky . (9)

Performing the integral in z in (8), taking necessary variable sub-
stitution and introducing an exponential cutoff function so as to 
renormalize the divergent energy, finally we can obtain the Casimir 
energy observed at coordinate origin

2 In this letter gμν(0), gμν(0), g(0) are abbreviated to gμν , gμν and g , respec-
tively.

E0 =
√

g00

ĝ00
E p, (10)

where ĝ00 = g00 − g2
03

g33
is the 00-component of metric in drag-

ging frame, E p = − π2 S p

1440L3
p

, S p = ´ ´ √
g11 g22dxdy and Lp =

´ L/2
−L/2

√
−g33 + g2

03
g00

dz denote proper surface area and proper length 
of the cavity, respectively, so E p is the Casimir energy in flat 
space–time.

From the expression (10), one can see that for comoving ob-
server in static space–time background, the Casimir energy is just 
the proper value in Minkowski space–time. This basically agrees 
with the result obtained for the cavity placed in weak gravitational 
field [10,11,13]. One can also find that when the observer is in sta-
tionary rather than static space–time, the observed value will be 
different with the proper value by a factor depending on space–
time background. It can be checked that the result in [15] is only a 
particular case of (10). The above conclusions can be understood 
by taking a Coordinate scale transformation 

√|gμμ|dxμ = dx′ μ , 
then line element becomes ημμdx′ μdx′ μ + 2 g03√−g00 g33

dt′dz′ with 
ημμ being Minkowski metric. In static case that g03 = 0, the 
space–time is actually flat in the rescaled Coordinate, thus we can 
have E0 = E p . But in the case of g03 �= 0, the space–time is still 
curved after transformation, so generally E0 �= E p . We should note 
that such a Coordinate transformation does not change the Casimir 
energy which can be easily verified. The above discussion is only 
limited to comoving observer case. Actually, the observed Casimir 
energy is dependent on observer. For an arbitrary stationary ob-
server located at point z, this energy should be

Ez = g00

g00(z)

√
g00

ĝ00
E p. (11)

The above equation can be rewritten as:

g00(z)Ez = g00 E0 = const. (12)

Thus the Casimir energy observed at one point is inversely propor-
tional to the 00-component of metric at this point, regardless of 
the space–time is static or stationary.

In practice, Casimir cavity is immersed in thermal bath. So in 
the next we will take temperature into account and give thermal 
corrections to the Casimir thermodynamic quantities. We begin 
with the thermal correction to free energy [18,16]

	T F = 1

L

∞∑
n=1

¨
dkxdky

(2π)2

ˆ

V

dxdydz
√

gs T ln
(
1 − e−ωn/T )

. (13)

For the convenience of calculation, here we assume the tempera-
ture is independent of coordinate, so it can be extracted from the 
integral. Now substituting (5) into (13) and taking k̃x =

√
g11

g33 kx , 

k̃y =
√

g22

g33 ky , β =
√

g332

g032 −g00 g33
/T , then after some algebra, we ar-

rive at

	T F = −g33√g00 S p

2π
√

g11 g22β

∞∑
n=1

∞̂

0

kdk ln
(
1 − e

−β

√
k2+( nπ

L )2)
(14)

with k2 = k̃2
x + k̃2

y . The logarithm in (14) can be written as power 
series

	T F = g33√g00 S p

2π
√

g11 g22β3

∞∑
n,m=1

1

m

∞̂

nπβ/L

hdhe−mh, (15)
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