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We study the motion of domain walls in 1+1, 2+1 and briefly 3+1 d relativistic φ6 model with three 
equal vacua in the presence of radiation. We show that even small fluctuations can trigger a chain reac-
tion leading to vanishing of the domain walls. Only one vacuum remains stable and domains containing 
other vacua vanish. We explain this phenomenon in terms of radiation pressure (both positive and nega-
tive). We construct an effective model which translates the fluctuations into additional term in the field 
theory potential. In case of two dimensional model we find a relation between the critical size of the 
bulk and amplitude of the perturbation.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Topological defects arise in surprisingly many branches of 
physics. They can be found in liquid crystals [1], liquid helium 
[2], ferromagnets, superconductors, graphene [3] and many more 
important physical substances. It is also natural to expect that 
topological defects should have been created in large numbers 
in the early Universe via Kibble–Zurek mechanism during some 
symmetry breaking phase transitions [4,5]. Unfortunately there are 
no direct observation evidence proving such objects ever existed. 
However, it might be plausible that some linear defects (cosmic 
strings) could give origins to some large scale structures in the 
Universe. Some observed fluctuations in the cosmic microwave 
background referred to as “cold spot” could be explained as rem-
nants of textures from early stages the Universe [6,7]. Topological 
defects are sometimes also considered as one of the dark matter 
candidates [8]. Surprisingly, there are no signs of other defects like 
monopoles and domain walls.

Topological defects can interact with each other as well as with 
some other objects like oscillons [9,10]. A very interesting interac-
tion also can be observed between topological defects and radia-
tion. In some cases the radiation can exert an ordinary radiation 
pressure proportional to the square of amplitude of incident wave. 
However, some defects, like kinks in a very popular φ4 theory, are 
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transparent to the radiation in the first order [11,12]. Sine-Gordon 
kinks are exactly transparent in all orders. Higher order analysis in 
φ4 model revealed a surprising feature. The kinks undergo the neg-
ative radiation pressure (NRP) which accelerates the kinks towards 
the source of radiation. The acceleration of a kink in φ4 model 
is proportional to the fourth power of amplitude of the wave. In 
models with two scalar fields with different masses it is possible 
that the radiation can exert both positive and negative radiation 
pressure depending on the composition of the wave [13,14]. In 
such a case the force exerted on the kink is proportional to the 
square of the amplitude. More recently some other examples were 
discussed in case of light and matter waves which, when scattered 
on a small objects, can bend in such a way that the object would 
feel the pulling force [15,16]. Mixing between different frequen-
cies can cause the NRP in case of solitons with rotating phase as 
in Coupled Nonlinear Schrödinger Equation [17]. We want to em-
phasize that the NRP seen in case of solitons in the present and 
our previous papers is of a very different nature then the one de-
scribed in optical physics. It can be exerted on flat and infinite 
surfaces where simple bending of the light or other wave trajecto-
ries is not an option.

In the present paper we consider a mechanism which could in-
crease the rate of the domain wall collisions. In models with at 
least two equal minima of the potential but with different masses 
of small perturbations around those vacua. The interest in such 
models has increased recently [18–20] but they were considered 
many years ago as for example so called bag models of hadrons 
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[21]. Static kinks (or domain walls in general) in such models have 
asymmetric profiles. We show that despite the fact that the vacua 
have the same energies (they are true vacua) the kinks usually 
accelerate in one direction no matter from where the radiation 
comes. Antikinks accelerate in opposite direction. Any small per-
turbation can therefore trigger a chain reaction during which de-
fects collide and create more radiation accelerating other defects 
causing more collisions.

The present letter is organized as follows. First we define 
our example φ6 model, than we show how kinks interact with 
monochromatic wave in case of two vacua with different masses 
of scalar field. We derive an analytic formula for the force with 
which such monochromatic wave acts on a kink. Next we show 
how generic perturbation can influence the stability of kink system 
(a lattice). In particular we study the effect of random fluctua-
tions with Gaussian distribution filling the whole space. We show 
that the fluctuations are in some ways equivalent to the shift of 
the vacua. We also compare the results with other models. The 
last section concerns higher dimensional case. We find a critical 
size of a circular domain wall which could either grow or collapse 
depending on what type of vacuum is inside and how large the 
fluctuations are.

2. The model

In the present paper we consider one and two dimensional φ6

theory, which can be defined by the rescaled Lagrangian density 
[22,18]

L = 1

2
∂μφ∂μφ − U (φ), where U (φ) = 1

2
φ2

(
φ2 − 1

)2
. (1)

The model has three vacua φv ∈ {−1, 0, 1}. Small perturbations 
around these vacua have different masses: m0 = 1 and m1 = 2
for φv = 0 and φv = ±1 respectively. In one dimensional case the 
kinks and antikinks can be found from a single solution

φK (x) ≡ φ(0,1)(x) =
√

1+ tanh x

2
(2)

using the discrete symmetries of the model: The masses of all 
kinks are M = 1/4. Small perturbation added to the kink solution 
φ(x, t) = φs(x) + η(x)eiωt is governed by a linearized equation

−ηxx + V (x)η = ω2η (3)

the potential V (x) is

V (x) = U ′′(φs) = 15φ4
s − 12φ2

s + 1. (4)

Note that when x → −∞ the potential V → 1 and V (x → ∞) → 4. 
Solutions to this linearized equation can be found in analytic form 
in [22]. Let us consider a wave traveling from the left side of kink 
i.e. from φ = 0 vacuum. Asymptotic form of these solutions for 
frequencies above the two mass thresholds due to Lohe can be 
written as⎧⎨
⎩

η+∞(x) → eikx/A(q,k),

η−∞(x) → eiqx + A(−q,k)
A(q,k)

e−iqx
(5)

with

q =
√

ω2 − 1, k =
√

ω2 − 4,

A(q,k) = �(1 − ik)�(−iq)

�(− 1
2 ik − 1

2 iq + 5
2 )�(− 1

2 ik − 1
2 iq − 3

2 )
.

(6)

This solution represents a wave traveling from −∞ with ampli-
tude 1. Amplitude of the reflected wave is equal to A(−q,k)

A(q,k)
, and 

Fig. 1. Theoretical values of the force exerted on the kink. In both cases the force is 
positive. The color points are the results of numerical calculations for A = 0.05.

amplitude of the transient wave is 1
A(q,k)

. We can use this form 
to calculate the momentum and energy balance far away from the 
kink. From Noether’s theorem, the conservation laws for energy 
and momentum density can be written as:

∂tE = ∂x
(
φ′φ̇

)
, (7a)

∂tP = −1

2
∂x

(
φ̇2 + φ′ 2 − 2U (φ)

)
. (7b)

Integrating the above expressions inside interval [−L, L] and av-
eraging over a period T we obtain energy and momentum bal-
ance just using asymptotic form of scattering solutions. If the 
kink does not move initially the conservation laws give (for φ =
φs + A re(e−iωtη(x))):

F+∞(q,k) = 1

2

A2

|A(q,k)|2
(

2|A(−q,k)|2q2 + qk − k2
)

. (8)

We can perform a very similar calculation for the second case 
when the wave is coming from +∞. The force in this case can 
be expressed as:

F−∞(q,k) = −F+∞(k,q) ≡ A2(ω) f (ω). (9)

Fig. 1 shows the force in both cases. Note that the force is positive 
for all frequencies. The kink will always accelerate towards +∞ no 
matter which direction the wave comes from. In the first case the 
wave comes from φ = 0 (m = 1) and exerts positive radiation pres-
sure. In the second case it comes from the second vacuum φ = 1
with mass m = 2 and exerts negative radiation pressure.

3. General perturbations

Kinks interact very weakly with each other on large distances. 
Their profile vanish exponentially, and so do the interaction be-
tween them. For a pair of kinks initially separated by the distance 
L the estimated time to the collision is of order of T ≈ 2eL/2/

√
L. 

The value was numerically verified. System of static, separated 
kinks can last even longer, because the forces from neighboring 
kinks cancel each other (Fig. 2.a, here for the first three kinks 
L = 20 so the timescale to collision is about 104). However, adding 
a small perturbation causes the radiation which exerts pressure on 
those kinks. We have tested this idea by adding a localized Gaus-
sian profile φ = φkinks + ae−bx2

or colliding two kinks (Fig. 2.b). 
The collapse of the system was evidently faster compared to the 
case when no perturbation was added. Because of the polarity in 
the direction of the radiation pressure, the kinks always acceler-
ate in such a way that the regions with vacuum φ = 0 grow and 
vacua φ = ±1 shrink. Moreover, when kink and antikink collide 
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