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We present a holographic description of the thermal behavior of bb̄ heavy vector mesons inside a plasma 
at finite temperature and density. The meson dissociation in the medium is represented by the decrease 
in the height of the spectral function peaks. In order to find a description for the evolution of the quasi-
states with temperature and chemical potential it is crucial to use a model that is consistent with the 
decay constant behavior. The reason is that the height of a spectral function peak is related to the value 
of the zero temperature decay constant of the corresponding particle. AdS/QCD holographic models are in 
general not consistent with the observation that decay constants of heavy vector mesons decrease with 
radial excitation level. However, it was recently shown that using a soft wall background and calculating 
the correlation functions at a finite position of anti-de Sitter space, associated with an ultraviolet energy 
scale, it is possible to describe the observed behavior. Here we extend this proposal to the case of finite 
temperature T and chemical potential μ. A clear picture of the dissociation of bottomonium states as a 
function of μ and T emerges from the spectral function. The energy scales where the change in chemical 
potential leads to changes in the thermal properties of the mesons is consistent with QCD expectations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding the thermal properties of heavy vector mesons 
inside a plasma of quarks and gluons can be a helpful tool for 
investigating heavy ion collisions. The dissociation of such parti-
cles may indicate the formation of a thermal medium. This type 
of proposal, considering charmonium states, appeared a long time 
ago in [1] (see also [2]).

A holographic description of the dissociation of charmonium 
and bottomonium states in a plasma at finite temperature but zero 
density appeared recently in ref. [3]. In this article the first radial 
excitations 1S, 2S and 3S appear as clear peaks of the spectral 
function. The height of the peaks decrease as the temperature of 
the medium increases, as expected. This reference used a finite 
temperature version of the holographic AdS/QCD model proposed 
in ref. [4] for calculating decay constants and masses of vector 
mesons. For completeness we mention that a previous model that 
describes the thermal behavior of the first excited state of charmo-
nium appeared before in ref. [5].

AdS/QCD models, inspired in the AdS/CFT correspondence [6–8], 
provide nice fits for hadronic mass spectra. The simplest one is 
the hard wall AdS/QCD model, proposed in refs. [9–12] and con-
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sists in placing a hard cutoff in anti-de Sitter (AdS) space. Another 
AdS/QCD model is the soft wall that has the property that the 
square of the mass grow linearly with the radial excitation number 
[13]. In this case the background involves AdS space and a scalar 
field that acts effectively as a smooth infrared cutoff. A review of 
AdS/QCD models can be found in [14].

It is possible to use holographic models to calculate another 
hadronic property: the decay constant. The non-hadronic decay 
of mesons is represented as a transition from the initial state 
to the hadronic vacuum. For a meson at radial excitation level 
n with mass mn the decay constant is defined by the relation 
〈0| Jμ(0) |n〉 = εμ fnmn , where Jμ is the gauge current, εμ the po-
larization and there is no implicit sum over n. Note that one finds 
other definitions for the decay constants, involving different factors 
of the mass, in the literature.

The two point function has a spectral decomposition in terms 
of masses and decay constants of the states:

�(p2) =
∞∑

n=1

f 2
n

(−p2) − m2
n + iε

. (1)

Calculating the left hand side of this equation using holography, 
one can find the mass and decay constant spectra [13,15].

In the finite temperature case, the particle content of a theory 
is described by the thermal spectral function, that is the imaginary 
part of the retarded Green’s function. The quasi-particle states ap-
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Table 1
Experimental masses and electron–positron widths from [16] and the corresponding 
decay constants for the Bottomonium S-wave resonances.

Bottomonium data

Masses (MeV) �V →e+e− (keV) Decay constants (MeV)

1S 9460.3 ± 0.26 1.340 ± 0.018 715.0 ± 2.4
2S 10023.26 ± 0.32 0.612 ± 0.011 497.4 ± 2.2
3S 10355.2 ± 0.5 0.443 ± 0.008 430.1 ± 1.9
4S 10579.4 ± 1.2 0.272 ± 0.029 340.7 ± 9.1

pear as peaks that decrease as the temperature or the density of 
the medium increase. The limit of the spectral function when T
and μ vanish is a sum of delta peaks with coefficients proportional 
to the square of the decay constants: f 2

n δ(−p2 − m2
n), arising from 

the imaginary part of eq. (1). So, the decay constants control the 
amplitude of the delta function peaks that appear in the spectral 
function at zero temperature. When the temperature is raised, the 
peaks are smeared. The height and the width of the peaks become 
finite. But a consistent extension to finite temperature must take 
into account the zero temperature behavior of the decay constants. 
That is why it is important to use a model that provides nice fits 
for the decay constants when one wants to find a reliable picture 
of the thermal spectral function.

In order to illustrate the behavior of the decay constants we 
show on Table 1 the experimental values of masses and electron 
positron decay widths �V →e+e− for bottomonium vector meson ϒ , 
made of a bottom quark anti-quark pair and for the first three radi-
ally excited S-wave resonances. We also show the associated decay 
constants, with the corresponding uncertainties. The experimental 
values for masses and decay widths are taken from ref. [16]. The 
decay constant of a vector meson state is related to it’s mass and 
width by [17]:

f 2
V = 3mV �V →e+e−

4πα2cV
, (2)

where α = 1/137 and cV is cϒ = 1/9. The decay constants de-
crease monotonically with the radial excitation level. A similar 
behavior is observed for charmonium vector states [4]. In contrast, 
the soft wall model as originally formulated leads to decay con-
stants for radial excitations of a vector meson that are degenerate 
The hard wall model provides decay constants that increase with 
the excitation level. The alternative version of the soft wall model 
developed in ref. [4] is consistent with the observed behavior. The 
decay constants are obtained from two point correlators of gauge 
theory operators calculated at a finite value z = z0 of the radial co-
ordinate of AdS space. This way an extra energy parameter 1/z0, 
associated with an ultraviolet (UV) energy scale, is introduced in 
the model.

In the subsequent article of ref. [3] this model was applied to 
the finite temperature and zero chemical potential case. A nice pic-
ture for the dissociation of 1S, 2S and 3S states of bottomonium
emerged, consistent with previous results [18]. The purpose of the 
present letter is to extend the study of bottomonium vector meson 
dissociation for the case of finite density.

Heavy mesons have also been discussed in the context of holog-
raphy in some interesting articles as, for example, refs. [19–30]. 
However the picture for the dissociation of 1S and 2S states of 
bottomonium in a medium with finite temperature and density 
that we show here is not yet present in the literature.

The article is organized as follows. In section 2 we explain 
the relation between the decay constants and the spectral func-
tion peaks. We also review the model of refs. [3,4] and explain the 
reason for using such a model with UV cut off in the finite tem-
perature and density case. In section 3 we present an extension to 

finite chemical potential. Then is section 4 we develop the calcu-
lation of the vector meson spectral function using the membrane 
paradigm. In section 5 we analyze the bottomonium thermal spec-
trum as a function of T and μ and discuss the results obtained.

2. Holographic model for decay constants

2.1. Decay constants in the soft wall

In the soft wall model [13] vector mesons are described by a 
vector field Vm = (Vμ, V z) (μ = 0, 1, 2, 3), assumed to be dual to 
the gauge theory current Jμ = ψ̄γ μψ . The action is:

I =
∫

d4xdz
√−g e−�(z)

{
− 1

4g2
5

Fmn F mn

}
, (3)

where Fmn = ∂m Vn − ∂n Vm and � = k2z2 is the soft wall dilaton 
background, that plays the role of a smooth infrared cut off and k
is a constant representing the mass scale.

The background geometry of the model is anti-de Sitter AdS5
space, with metric

ds2 = e2A(z)(−dt2 + d�x · d�x + dz2) , (4)

where A(z) = −log(z/R) and (t, �x) ∈R1,3, z ∈ (0, ∞).
One uses the gauge V z = 0. The boundary values of the other 

components of the vector field: V 0
μ(x) = limz→0 Vμ(x, z), μ = 0, 1,

2, 3 are assumed to be, as in AdS/CFT correspondence, sources of 
correlation functions of the boundary current operator

〈0| Jμ(x) Jν(y) |0〉 = δ

δV 0μ(x)

δ

δV 0ν(y)
exp (−Ionshell) , (5)

where the on shell action is given by the boundary term:

Ion shell = − 1

2g̃2
5

∫
d4x

[
e−k2 z2

z
Vμ∂z V μ

]
z→0

. (6)

For convenience we introduced g̃2
5 = g2

5/R , the relevant dimen-
sionless coupling of the vector field. One can write the on shell 
action in momentum space and decompose the field as

Vμ(p, z) = v(p, z)V 0
μ(p) , (7)

where v(p, z) is called bulk to boundary propagator and satisfies 
the equation of motion:

∂z

(e−k2 z2

z
∂z v(p, z)

)
+ p2

z
e−k2 z2

v(p, z) = 0 . (8)

The factor V 0
μ(p) works as the source of the correlators of gauge 

theory currents, so one imposes the boundary condition: v(p, z =
0) = 1. On the other hand, the two point function in momentum 
space is related to the current-current correlator by:(

p2ημν − pμpν

)
�(p2) =

∫
d4x e−ip·x〈0| Jμ(x) Jν(0) |0〉 . (9)

The two point function is expressed as:

�(p2) = 1

g̃2
5 (−p2)

[
e−k2 z2

v(p, z)∂z v(p, z)

z

]
z→0

, (10)

and has the spectral decomposition shown in eq. (1), in terms of 
masses and decay constants. The result for the decay constants, 
following this soft wall approach is [13]:

fn = k
√

2/g̃5 . (11)
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