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We extend previous results on healthy derivative self-interactions for a Proca field to the case of a set 
of massive vector fields. We obtain non-gauge invariant derivative self-interactions for the vector fields 
that maintain the appropriate number of propagating degrees of freedom. In view of the potential cos-
mological applications, we restrict to interactions with an internal rotational symmetry. We provide a 
systematical construction order by order in derivatives of the fields and making use of the antisymmetric 
Levi-Civita tensor. We then compare with the one single vector field case and show that the interactions 
can be broadly divided into two groups, namely the ones obtained from a direct extension of the gen-
eralized Proca terms and genuine multi-Proca interactions with no correspondence in the single Proca 
case. We also discuss the curved spacetime version of the interactions to include the necessary non-
minimal couplings to gravity. Finally, we explore the cosmological applications and show that there are 
three different vector field configurations giving rise to isotropic solutions. Two of them have already 
been considered in the literature and the third one, representing a combination of the first two, is new 
and offers unexplored cosmological scenarios.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The accelerated expansion of the universe discovered almost 
two decades ago still remains a challenging puzzle for modern 
cosmology. Assuming General Relativity as the appropriate theory 
describing the gravitational interaction on cosmological scales, the 
cosmic acceleration can be accounted for by simply including a 
cosmological constant. However, its required value in agreement 
with observations turns out to be tiny as compared to the expected 
natural value and this discord puts on trial our theoretical under-
standing of gravity and the standard techniques of quantum field 
theory [1]. This problem has triggered a plethora of attempts to 
modify gravity on large scales and most of them eventually un-
fold in the form of additional scalar fields, which can then be 
used as a condensate whose energy density can drive the accel-
erated expansion of the universe. Some modified gravity scenarios 
resorted to braneworld models with extra-dimensions as possible 
mechanisms to generate acceleration and/or alleviate the hierarchy 
problem, being the DGP model [2] a paradigmatic example. In this 
model, the effective scalar field describing the vibrations of the 
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brane presents interesting features among which we can mention 
interactions involving second derivatives of the scalar field, which 
nevertheless lead to second order field equations so that the Ostro-
gradski instability is avoided, and a Galilean symmetry allowing for 
constant shift not only in the field itself, but also in its gradient. 
These properties were then generalized to find the most general 
Lagrangian sharing such features [3] and are known as Galileon 
interactions. A nice property of these interactions is their radia-
tive stability under quantum corrections [4], even if they fail to 
tackle the cosmological constant problem. The covariantization of 
these Galileon interactions to include gravity requires the intro-
duction of non-minimal couplings in order to maintain the second 
order nature of the equations of motion and this led to the redis-
covery of the now so-called Horndeski Lagrangians, which are the 
most general scalar–tensor theories leading to second order equa-
tions of motion [5]. Further developments showed that it is in fact 
possible to build more general scalar–tensor theories with higher 
order equations of motion, but still without additional propagat-
ing degrees of freedom and, therefore, avoiding the Ostrogradski 
instability [6].

Along the lines of constructing consistent theories for scalar–
tensor interactions, one can try to build analogous consistent the-
ories for a vector field. Interestingly, very much like the Galileon
interactions can be elegantly obtained from geometrical construc-
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tions in higher dimensions [7,8], it is possible to obtain vector 
Galileon interactions within the framework of (generalized) Weyl 
geometries [9,10]. For a massive vector field one can indeed con-
struct non-gauge invariant derivative self-interactions of the vector 
field with the requirement that only three degrees of freedom 
propagate, as it corresponds to a massive vector field. The resulting 
theory is composed by the generalized Proca interactions which 
guarantee having second order equations of motion and the de-
sired 3 polarizations for the vector [11,12]. Not surprisingly and in 
a similar way to the Horndeski Lagrangians for a scalar field, the 
generalized Proca interactions can also be further extended to the 
case of more general vector–tensor interactions with higher order 
equations of motion, but still propagating three polarizations [13].

The goal of this work is to extend the generalized Proca in-
teractions to the case of several interacting vector fields to obtain 
a multi-Proca version of the healthy non-gauge invariant deriva-
tive interactions. A similar extension has also been pursued for 
the case of scalar Galileon interactions, resulting in the so-called 
multi-Galileon theories [14]. We will apply a construction scheme 
taking advantage of the symmetries of the Levi-Civita tensor in the 
same spirit as the one applied to the single Proca field in [12]. For 
this purpose, we will go order by order in derivatives of the vector 
fields and construct the interactions to guarantee that the temporal 
components of the vector fields do not propagate and, thus, giving 
rise to healthy interactions. Interactions for a generalized SU (2)

Proca field have been considered in [15,16]. In [16] the study was 
limited to interactions with up to six Lorentz indices using a differ-
ent approach. At the coincident orders, our interactions agree with 
theirs. Furthermore, our different systematical procedure allows us 
to construct interactions which are beyond the orders considered 
in [16].

The paper is organized as follows. We will start by very briefly 
reviewing non-abelian gauge theories. In section 3 we will proceed 
to the systematical construction of the interactions, ending with 
a summary of all the interactions. Section 5 will be devoted to 
making a comparison between the obtained interactions and those 
present in the single vector field case. Furthermore, this will allow 
us to identify some of the required non-minimal couplings to ex-
tend the interactions to curved spacetime. Finally, in section 6 we 
will discuss the possible configurations for the vector fields that 
will allow for isotropic cosmological solutions and illustrate it with 
a simple example. In section 7 we discuss our main findings.

Internal group and Lorentz (spacetime) indices will be de-
noted by Latin a, b, c, . . . and Greek α, β, γ , . . . letters respectively. 
We will use the mostly plus signature for the spacetime metric. 
The dual of an antisymmetric tensor Fμν is defined as F̃ μν ≡
1
2 εμνρσ Fρσ . We define symmetrization and antisymmetrization as 
T(μν) = Tμν + Tνμ and T [μν] = Tμν − Tνμ respectively.

2. Non-abelian gauge field

Before proceeding to the construction of the derivative self-
interactions for a set of massive vector fields, it will be conve-
nient to briefly review the properties of interacting massless vec-
tor fields. It is known that consistency of the interactions for the 
massless vector fields leads to the full non-abelian gauge struc-
ture of Yang–Mills theories. Alternatively, one can start with the 
Lagrangian for a set of massless vector fields Aa

μ

L = −1

4
Gab F aμν F b

μν (1)

with F a
μν = ∂μ Aa

ν − ∂ν Aa
μ and Gab a metric in the field space. 

The isometry group of this metric leads to the presence of global 
symmetries that, through Noether theorem, gives rise to a set of 
conserved currents. Then, when the interactions for the fields are 

introduced as consistent couplings to the currents, again the re-
sulting interactions are given by the Yang–Mills Lagrangian

L = −1

4
GabFaμνFb

μν (2)

with the non-abelian field strength

Fa
μν = F a

μν + g f abc Ab
μ Ac

ν (3)

where g is the coupling constant of the non-abelian field and f abc

are the structure constants of the Lie algebra of the isometry group 
of Gab whose generators Ta then satisfy [Ta, Tb] = i fab

c Tc and can 
be normalized so that Tr(Ta Tb) = Gab , i.e., Gab is nothing but the 
corresponding Killing metric of the group. The vector fields then 
take values in the Lie algebra of the group so that under an isom-
etry transformation with parameters θa the vectors transform in 
the adjoint representation Aa

μ → Aa
μ + fbc

aθb Ac
μ − ∂μθa/g , i.e., as 

it corresponds to a connection. One can then introduce the co-
variant derivative Dμ ≡ ∂μ1 − ig Aa

μTa , whose commutator gives, 
as usual, the curvature: [Dμ, Dν ] = −igFa

μν Ta . The field strength 
transforms covariantly1 and, thus, the above Lagrangian is gauge 
invariant. Adding a mass term for the vector fields breaks the non-
abelian gauge symmetry. This can be done either by adding a hard 
mass term to the Lagrangian or through a Higgs mechanism so that 
the gauge symmetry is spontaneously broken and it is non-linearly 
realized. Either way, the resulting Lagrangian will read

L = −1

4
GabFaμνFb

μν − 1

2
Mab Aa

μ Abμ, (4)

with Mab the mass matrix. Although the gauge symmetry is bro-
ken by the mass term, the original global symmetry can remain 
if, for instance, Mab ∝ Gab . Our main goal in this work is to con-
struct the generalization of the massive non-abelian vector field 
to include derivative self-interactions. For the construction we will 
follow closely the approach applied in [12]. For the sake of con-
creteness, we will restrict our analysis to the case of an internal 
rotational group for the vector fields, which can be viewed as a 
descendant of an original SU (2) gauge symmetry. In that case, we 
have that the Killing metric is the Euclidean metric δab (so low-
ering and raising group indices will be innocuous operations) and 
the structure constants are given by the completely antisymmet-
ric Levi-Civita symbol εabc . Furthermore, we will assume that the 
global symmetry remains so that the number of possible interac-
tions is substantially reduced. Since for S O (3) the adjoint and the 
fundamental representations are equivalent, we will no make any 
distinction in the following.

3. Systematical construction

In this section we will systematically construct the healthy 
derivate self-interactions for a set of vector fields with an inter-
nal global S O (3) symmetry, as explained above. The procedure 
that we will follow is then based in the usual construction mak-
ing use of the antisymmetry of the Levi-Civita tensor εμναβ and 
that has been extensively exploited in the literature to construct 
healthy interactions. In particular, it was used in [17] to general-
ize the Galileon interactions to the case of arbitrary p-forms. For a 
set of interacting 1-forms (resembling the case under study here) 
it is possible to write Galileon interactions while retaining a non-
abelian gauge symmetry. However, the first dimension where they 
are non-trivial is D = 5 and, since our analysis will be performed 

1 As opposed to the abelian case where the field strength is gauge invariant.



Download English Version:

https://daneshyari.com/en/article/5494842

Download Persian Version:

https://daneshyari.com/article/5494842

Daneshyari.com

https://daneshyari.com/en/article/5494842
https://daneshyari.com/article/5494842
https://daneshyari.com

