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We have found some analytical cosmological solutions to MOdified Gravity (MOG). These solutions 
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the evolution of cosmological perturbation is studied in the Newtonian framework and compared with 
the corresponding results of GR.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There are many observations in cosmology leading to the in-
troduction of mysterious aspects of dark matter and dark energy. 
One can think of an alternative gravitational dynamics instead of 
introducing dark matter and dark energy. At present, many modi-
fied gravitational theories are proposed [1]. Two usual approaches 
are adding higher order curvature invariants and extra fields in 
the gravitational action. For the latter case, two important ex-
tended theories are Tensor–Vector–Scalar (TeVeS) theory [2] and 
MOdified Gravity (MOG) [3]. In both, gravity is described by some 
tensor, vector and scalar fields and there exist some free parame-
ters which must be fitted to observations.

MOG introduced in order to explain the flat rotation curves 
of spiral galaxies and mass discrepancy in galaxy clusters with-
out the need of exotic dark matter [4] as well as explaining the 
large scale structure of the universe [5]. In this article we study 
how small initial inhomogeneities grow in an expanding universe 
in MOG. We take the Newtonian viewpoint which is an adequate 
description of relativistic treatment on sub-horizon scale and for 
non-relativistic matter perturbation. To do this, it is required to 
have the background metric of space–time. Thus we must first find 
some cosmological solutions of MOG. Some of these solutions are 
obtained in [6] using the numerical methods and in [7] via the 
Noether symmetry approach [8].

In this paper, after reviewing the basic equations of MOG, we 
derive some cosmological solutions for a spatially flat Friedmann–
Robertson–Walker (FRW) universe with a perfect fluid in section 3. 
The first one corresponds to an exact power-law evolution of dy-

* Corresponding author.
E-mail address: fshojai@ut.ac.ir (F. Shojai).

namical fields while the other one corresponds to a universe which 
is dominated by a single component fluid together with G-field. 
We consider G-radiation, G-phion and G-matter dominated uni-
verses. These are interested since we want to study the evolution 
of inhomogeneity in these epochs. A brief discussion of Newtonian 
analysis of gravitational instability in MOG [9] is presented in sec-
tion 4. Then we study how the sub-Hubble fluctuations evolve in 
an expanding universe and compare the result with standard cos-
mology in section 5.

2. The cosmological field equations of MOG

MOG theory postulates more gravitational fields than GR. In ad-
dition to metric tensor, gαβ , there are a massive Proca vector field 
φμ(x) which is coupled to matter and two additional scalar fields, 
μ(x), the mass of the vector field, and G(x), a variable gravitational 
constant. The action of this theory can be written as [3]:

S = S grav + S� + Sφ + Sμ + SG + SM (1)

where SM , is the matter sector of action and S grav , S� , Sφ , Sμ and 
SG are given by:
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16π
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in which ω0 is a dimensionless positive coupling constant and 
Bαβ = ∇αφβ − ∇βφα . R is the Ricci scalar and � is the cosmo-
logical constant. Vφ , Vμ and V G are self interaction potentials of 
the vector and scalar fields. The constant coupling parameter ω0
in the action and the resulting field equations plays no significant 
role and can be absorbed in other variables, and thus hereafter we 
set it equal to unity. Considering a spatially flat FRW metric:

dS2 = −dt2 + a2(t)
(

dr2 + r2d�2
)

(7)

in which a(t) is the scale factor of the universe. Here we shall use 
the original MOG potential in the form [3]:

Vφ = −1

2
μ2φμφμ (8)

and set the other potential functions to zero. The MOG cosmologi-
cal equations are:

ȧ2
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where κ is a coupling constant that appears in variation of mat-
ter action with respect to φα [3] and a dot denotes derivative 
with respect to the cosmic time. The zeroth component of the 
vector field is the only non-zero component of φ-field because 
of the cosmological principle which also implies the conservation 
of energy-momentum tensor of cosmological fluid in MOG theory 
[10]. The above equations are generalized Friedmann equations and 
the equations of motion for G and μ fields respectively. The last 
relation gives the coupling of matter to φ field which is neutral 
and doesn’t couple to photons. Therefore, φ field perturbations can 
grow during the radiation dominated era in which baryons and 
photons are strongly coupled.

Using the definition of the energy-momentum tensor of fields 
(the index f can be �, φ, μ or G).

Tμν = −2√−g

δS f

δgμν
(14)

we have:
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Using the above relations, one can rewrite the first two equations 
of motion, (9) and (10), as follows:
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where ω� = −1, ωμ = ωG = 1, ωφ = 0. We use this form of equa-
tions in the next section in which we study how a single or two 
fluid components drive the evolution of the universe.

To obtain a closed system of equations, one must specify one 
equation of state for matter which is usually assume to be linear 
in cosmology:

p = ωρ (21)

where the equation of state parameter ω is a constant.
Before discussing some cosmological solutions of MOG theory, 

let us explain briefly how this theory is consistent with the obser-
vational data. Below, we list some of the more important ones:

• Big-Bang nucleosynthesis
At the nucleosynthesis era, the gravitational constant is very 
close to the Newtonian one [5] and thus the abundances of 
the light elements agree with the available data.

• Rotation curve
Using the weak field approximation of MOG [11,12], one ob-
tains an effective gravitational potential which has two free 
parameters, α = (G∞ − G N )/G N and μ̃. G N is the Newtonian 
gravitational constant, G∞ is the effective gravitational con-
stant at infinity and μ̃ is the mass of vector field which is 
constant at this approximation. Best fitting of the galaxy rota-
tion curves gives: α � 8.89 ± 0.34, μ̃ � 0.042 ± 0.004 kpc−1

[11,12].
• Baryon acoustic oscillations

Since the Jeans length of pressureless phion particles (the par-
ticle of φ field) is very small, there is no oscillatory behaviour
for these particles. Their perturbations grow while baryon per-
turbations oscillate before decoupling [5].

• The CMB power spectrum
In the present universe: (�0

b)M O G = (�0
b)�C DM , ρ0

φ � ρ0
b , 

G0 = G N (1 + α) and (G Nρ)�C DM = (G N (1 + α)ρ)M O G where 
ρ�C DM = ρb + ρC DM and ρM O G = ρb . Going back to the 
past, at the decoupling time, ρφ � ρb and α � 1, thus 
(G Nρ)�C DM = (G Nρφ)M O G [5,13]. This shows that the CMB 
power spectrum in MOG agrees with the corresponding one in 
�C DM model.

3. Some exact cosmological solution of MOG

In this section we find some cosmological solutions of MOG 
theory with zero cosmological constant. The simplest analytical so-
lutions are power-law type. Assuming that:
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t
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t
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t
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t
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)β (22)

where a subscript “0” indicates the value of any quantity evaluated 
at the present and the usual normalization a0 = 1 is used. Inserting 
(22) into equations (7)–(12), we find that
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