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We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the 
stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the 
VLT (due for commissioning in late 2017), as well by the planned high-resolution spectrograph (currently 
in Phase A) for the European Extremely Large Telescope. Assuming a fiducial model without α variations, 
we show that ESPRESSO can improve current bounds on the Eötvös parameter—which quantifies Weak 
Equivalence Principle violations—by up to two orders of magnitude, leading to stronger bounds than 
those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT 
should be competitive with those of the proposed STEP satellite. Should an α variation be detected, 
these measurements will further constrain cosmological parameters, being particularly sensitive to the 
dynamics of dark energy.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Astrophysical tests of the stability of fundamental couplings are 
an extremely active area of observational research [1,2]. The deep 
conceptual importance of carrying out these tests has been com-
plemented by recent (even if somewhat controversial [3]) evidence 
for such a variation [4], coming from high-resolution optical/UV 
spectroscopic measurements of the fine-structure constant α in 
absorption systems along the line of sight of bright quasars. The 
forthcoming ESPRESSO spectrograph [5], due for commissioning at 
the combined Coudé focus of ESO’s VLT in late 2017, should signif-
icantly improve the sensitivity of these tests, as well as the degree 
of control over possible systematics.

Moreover, the results of these tests—whether they are detec-
tions of variations or null results—have a range of additional cos-
mological implications. They provide competitive constraints on 
Weak Equivalence Principle (WEP) violations [1,6,7] and, in the 
more natural scenarios where the same dynamical degree of free-
dom is responsible both for the dark energy and the α variation, 
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can also be used in combination with standard cosmological ob-
servables to constrain the dark energy equation of state [8,9] and 
indeed to reconstruct its redshift dependence [10,11].

While current data already provides useful constraints, the 
imminent availability of more precise measurements from the 
ESPRESSO spectrograph will have a significant impact in the field. 
In this work we apply standard Fisher Matrix analysis tech-
niques to forecast the improvements that may be expected from 
ESPRESSO, but we also take the opportunity to look further ahead 
and discuss additional gains in sensitivity from the European Ex-
tremely Large Telescope (E-ELT), whose first light will be in 2024.

2. Varying α, dark energy and the weak equivalence principle

Dynamical scalar fields in an effective four-dimensional field 
theory are naturally expected to couple to the rest of the theory, 
unless a (still unknown) symmetry is postulated to suppress these 
couplings [12–14]. We will assume that this coupling does exist for 
the dynamical degree of freedom responsible for the dark energy, 
assumed to be a dynamical scalar field denoted φ. Specifically the 
coupling to the electromagnetic sector is due to a gauge kinetic 
function B F (φ)

LφF = −1

4
B F (φ)Fμν F μν . (1)

This function can be assumed to be linear,
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B F (φ) = 1 − ζκ(φ − φ0) , (2)

(where κ2 = 8πG) since, as has been pointed out in [13], the 
absence of such a term would require the presence of a φ →
−φ symmetry, but such a symmetry must be broken throughout 
most of the cosmological evolution. The dimensionless parameter 
ζ quantifies the strength of the coupling. With these assumptions 
one can explicitly relate the evolution of α to that of dark energy 
[6,15]. The evolution of α can be written

�α

α
≡ α − α0

α0
= B−1

F (φ) − 1 = ζκ(φ − φ0) , (3)

and defining the fraction of the dark energy density (the ratio of 
the energy density of the scalar field to the total energy density, 
which also includes a matter component) as a function of redshift 
z as follows

	φ(z) ≡ ρφ(z)

ρtot(z)
� ρφ(z)

ρφ(z) + ρm(z)
, (4)

where in the last step we have neglected the contribution from 
the radiation density (we will be interested in low redshifts, z < 5, 
where it is indeed negligible), the evolution of the scalar field can 
be expressed in terms of 	φ and of the dark energy equation of 
state wφ as

1 + wφ = (κφ′)2

3	φ

, (5)

with the prime denoting the derivative with respect to the log-
arithm of the scale factor. Putting the two together we finally 
obtain

�α

α
(z) = ζ

z∫
0

√
3	φ(z′)

[
1 + wφ(z′)

] dz′

1 + z′ . (6)

The above relation assumes a canonical scalar field, but the argu-
ment can be repeated for phantom fields, leading to

�α

α
(z) = −ζ

z∫
0

√
3	φ(z′)

∣∣1 + wφ(z′)
∣∣ dz′

1 + z′ ; (7)

the change of sign stems from the fact that one expects phan-
tom fields to roll up the potential rather than down. Note that in 
these models the evolution of α can be expressed as a function of 
cosmological parameters plus the coupling ζ , without explicit ref-
erence to the putative underlying scalar field. In these models the 
proton and neutron masses are also expected to vary—by different 
amounts—due to the electromagnetic corrections of their masses. 
Therefore, local tests of the Equivalence Principle also constrain the 
dimensionless coupling parameter ζ [1], and (more to the point for 
our present purposes) they provide us with a prior on it.

We note that there is in principle an additional source term 
driving the evolution of the scalar field, due to the derivative of 
the gauge kinetic function, i.e. a term proportional to F 2 B ′

F . By 
comparison to the standard (kinetic and potential energy) terms, 
the contribution of this term is expected to be subdominant, both 
because its average is zero for a radiation fluid and because the 
corresponding term for the baryonic density is constrained by the 
aforementioned Equivalence Principle tests. For these reasons, in 
what follows we neglect this term (which would lead to environ-
mental dependencies). We nevertheless note that this term can 
play a role in scenarios where the dominant standard term is sup-
pressed.

A light scalar field such as we are considering inevitably cou-
ples to nucleons due to the α dependence of their masses, and 

therefore it mediates an isotope-dependent long-range force. This 
can be quantified through the dimensionless Eötvös parameter η, 
which describes the level of violation of the WEP [1]. One can 
show that for the class of models we are considering the Eötvös 
parameter and the dimensionless coupling ζ are simply related by 
[1,13,14]

η ≈ 10−3ζ 2 ; (8)

we note that while this relation is correct for the simplest canon-
ical scalar field models we will consider in what follows, it is 
somewhat model-dependent (for example, it is linear rather than 
quadratic in ζ for Bekenstein-type models [7]).

3. Forecasting tools and fiducial models

We will be considering three fiducial dynamical dark energy 
models where the scalar field also leads to α variations according 
to Eq. (6), as follows

• A constant dark energy equation of state, w0 = const .
• A dilaton-type model where the scalar field φ behaves as 

φ(z) ∝ (1 + z); this is well motivated in string theory inspired 
models [16], but for our purposes it also has the advantage 
that despite the fact that it leads to a relatively complicated 
dark energy equation of state

w(z) = [1 − 	φ(1 + w0)]w0

	m(1 + w0)(1 + z)3[1−	φ(1+w0)] − w0
, (9)

(where we are assuming flat universes, so the present-
day values of the matter and dark energy fractions satisfy 
	m + 	φ = 1); in this case Eq. (6) simplifies to [6]

�α

α
(z) = ζ

√
3	φ(1 + w0) ln (1 + z) . (10)

Thus this case allows us to carry out analytic calculations, 
which we have used to validate our numerical pipeline.

• The well-known Chevallier–Polarski–Linder (CPL) parametriza-
tion [17,18], where the redshift dependence of the dark energy 
equation of state is described by two separate parameters, w0
(which is still its present-day value) and wa describing its evo-
lution, as follows

w(z) = w0 + wa
z

1 + z
. (11)

All of these have been used in previous works to obtain constraints 
from current data [6,8,9] or to forecast dark energy equation of 
state reconstructions [10,11], and therefore these previous works 
can easily be compared with ours.

Our forecasts were done with a Fisher Matrix analysis [19,20]. 
If we have a set of M model parameters (p1, p2, ..., pM) and N 
observables—that is, measured quantities—( f1, f2, ..., f N) with un-
certainties (σ1, σ2, ..., σN ), then the Fisher matrix is

Fij =
N∑

a=1

∂ fa

∂ pi

1

σ 2
a

∂ fa

∂ p j
. (12)

For an unbiased estimator, if we don’t marginalize over any other 
parameters (in other words, if all are assumed to be known) then 
the minimal expected error is θ = 1/

√
Fii . The inverse of the Fisher 

matrix provides an estimate of the parameter covariance matrix. 
Its diagonal elements are the squares of the uncertainties in each 
parameter marginalizing over the others, while the off-diagonal 
terms yield the correlation coefficients between parameters. Note 
that the marginalized uncertainty is always greater than (or at 
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