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Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion–nucleon amplitude 
in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy 
constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order 
in the small-scale expansion, we address the question to what extent this tension can be mitigated by 
including the �(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon 
ChPT. We find that the inclusion of the � indeed reduces the low-energy constants to more natural values 
and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in 
the �-less theory the resummation of 1/mN corrections in the covariant scheme improves the results 
markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon 
sector of ChPT that so far have evaded a profound theoretical explanation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The approximate chiral symmetry of QCD imposes strong con-
straints on low-energy hadron dynamics, which can be explored 
systematically in the framework of chiral perturbation theory 
(ChPT) [1–3]. While in the meson sector the expansion proceeds 
directly in terms of momenta and quark masses divided by a 
breakdown scale �b, typically identified with the mass of the 
ρ(770) or the scale of chiral symmetry breaking �χ = 4π Fπ ∼
1.2 GeV, in the baryon sector the nucleon mass mN represents a 
new scale that needs to be taken into account in order not to spoil 
the chiral power counting [4]. Heavy-baryon ChPT (HBChPT) [5,6]
achieves this by systematically expanding the effective Lagrangian 
in 1/mN , identifying �b ∼ mN . In subsequent years, several vari-
ants of covariant baryon ChPT have been developed [7–12], in 
which the power-counting-violating part is subtracted in one way 
or another. While originally motivated by the desire to preserve 
the analytic structure of the amplitude in the vicinity of anomalous 
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thresholds and unitarity cuts, it has also been observed that the re-
summation of 1/mN corrections can improve the phenomenology 
even in kinematic regions where the HB formulation does repro-
duce the analytic structure correctly [13–16].

The efficacy of different formulations of baryon ChPT has im-
plications beyond the single-nucleon sector. In chiral effective field 
theory, the extension of ChPT to multi-nucleon systems [17–21], 
the low-energy constants (LECs) that appear in pion–nucleon (π N) 
scattering determine the long-range part of the nucleon–nucleon 
(N N) potential as well as three-nucleon forces. While the use of 
the HB formulation is common to all implementations to date, 
1/mN corrections are often counted suppressed by one additional 
order compared to the standard single-nucleon HB counting, to ac-
count for the fact that the breakdown scale in the multi-nucleon 
sector tends to be lower than in single-nucleon applications [18,
20] (this counting scheme will be referred to as HB-N N counting 
in the following, in contrast to the standard HB-π N).

Recently, the combination of dispersion theory in the form of 
Roy–Steiner (RS) equations [22–28] with precision measurements 
of the π N scattering lengths in pionic atoms [29–33] resulted 
in a reliable representation of the π N scattering amplitude in 
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the whole low-energy region, both in the physical region and for 
subthreshold kinematics. Surprisingly, the matching to HBChPT re-
vealed that, in contrast, the chiral representation is not accurate 
enough to relate these two regions [25]. These findings can be best 
illustrated considering the parameters in the expansion around 
threshold and the subthreshold point: with LECs determined in the 
subthreshold region, where due to the absence of unitarity cuts 
ChPT is expected to converge best [34], the chiral series fails to 
reproduce some of the threshold parameters. The reason for this 
behavior can be traced back to loop diagrams producing terms 
that scale as g2

A(c3 − c4) ∼ −16 GeV−1, an enhancement that is, 
at least partially, generated by saturation of the LECs ci with the 
�(1232) resonance. As argued in [25], this inconsistency between 
subthreshold and threshold kinematics implies that in a HB formu-
lation, LECs determined at the subthreshold point are preferable 
for multi-nucleon applications, given that the kinematics for the 
two-pion exchange in the N N potential are much closer to the 
subthreshold point than to the physical region in π N scattering.

In this paper we address the question to what extent consis-
tency between subthreshold and physical region can be restored 
by introducing the � as an explicit degree of freedom, and/or 
by using a covariant formulation of baryon ChPT. The � is in-
cluded within the small-scale expansion [35], counting the differ-
ence ε = m� − mN in the same way as a momentum scale p. π N
scattering with explicit � degrees of freedom has been consid-
ered before at O(ε3) in HB [36] and covariant [37] formulations, 
as well as within the δ-counting of [38] up to O(p3) in a covari-
ant scheme [15] (see also [39]). Here, we extend the analysis to 
full one-loop order O(ε4) and study the predictions for the lead-
ing eight threshold parameters, with LECs determined from the 
subthreshold parameters predicted by the RS analysis [26]. After 
a brief introduction to the formalism in Sect. 2, we first present 
the results when including the � in HBChPT in Sect. 3, and then 
extend the analysis towards a covariant formulation in Sect. 4. We 
offer our conclusions in Sect. 5. Details on large-Nc constraints and 
correlation coefficients of the extracted LECs are summarized in 
the appendices.

2. Formalism

For the calculation of the threshold and subthreshold parame-
ters, we heavily rely on the full O(ε4) results from [40], where the 
T -matrix for the process π N → π N is calculated in the small-scale 
expansion

ε =
{

p

�b
,

Mπ

�b
,

m� − mN

�b

}
with �b ∈ {�χ,mN}, (1)

in the HB as well as in the covariant approach. The standard on-
mass-shell renormalization scheme is employed for the leading-
order LECs, where pion, nucleon, and � masses are denoted by 
Mπ , mN , and m� , respectively, and the axial couplings of the nu-
cleon and nucleon–� transition by g A and hA (both axial couplings 
are renormalized at the pion vertex instead of the axial current). 
After absorbing redundant contributions proportional to the LECs 
d18 from L(3)

π N ,1 e19,20,21,22,36,37,38 from L(4)
π N , b3,6 from L(2)

π N� , c�
i

from L(2)
π� , hi from L(3)

π N� , and ki from L(4)
π N� , the π N scatter-

ing amplitude at O(ε4) depends on the LECs c1,2,3,4 from L(2)
π N , 

d1+2,3,5,14−15 from L(3)
π N , e14,15,16,17,18 from L(4)

π N , hA from L(1)
π N� , 

g1 from L(1)
π� , and b4,5 from L(2)

π N� . In the HB approach, the LECs 
ci , di , and ei are renormalized to absorb UV divergent and addi-
tional decoupling-breaking pieces. In the covariant approach, the 

1 In all Lagrangians, the upper index denotes the chiral order, the lower the par-
ticle content. For explicit expressions we refer to [40].

same set of LECs is needed to cancel UV divergences as well as 
decoupling- and/or power-counting-breaking pieces [16,40]. In par-
ticular, both chiral amplitudes are renormalized in such a way that 
the explicit difference is of higher order only, O(ε5).

Employing the standard subthreshold and threshold expansion 
of the π N scattering amplitude, we calculate both sets of the 
respective coefficients (explicit expressions are provided as sup-
plementary material in the form of a Mathematica notebook). 
Furthermore, we performed a strict chiral expansion of the co-
variant expressions to check that the HB expressions determined 
from the HB amplitude are reproduced. In contrast to the �-less 
case, where the 13 leading subthreshold parameters depend on 13
ππ N N-LECs, the expressions in the �-ful case depend on 4 addi-
tional LECs from the � sector. Thus, these additional LECs cannot 
be extracted by the subthreshold matching but further constraints 
have to be introduced. In particular, we assume the following con-
servative estimates for those particular LECs

hA = 1.40 ± 0.05, b4 + b5 = (0 ± 5)GeV−1,

g1 = 2.32 ± 0.26, b4 − b5 = (0 ± 5)GeV−1, (2)

motivated by large-Nc considerations and, in the case of hA , sup-
plemented by phenomenology, as explained below, where the in-
put from phenomenology allows us to reduce the uncertainty com-
pared to the large-Nc prediction alone.

Given that the contributions proportional to hA already appear 
at leading order, its error is most important for the final uncer-
tainty, but our assignment in (2) is still reasonably conservative. It 
is consistent with the large-Nc prediction, hA = 1.37 ±0.15 [41,42], 
the value extracted from the covariant � width at full one-loop 
order hA = 1.43 ± 0.02 [43], and the recent extraction from N N
scattering by the Granada group, hA = 1.397 ± 0.009 [44], where 
the error refers to statistics only. The contribution proportional to 
g1 starts at loop level, O(ε3), and its effect on the threshold and 
subthreshold parameters is much less relevant. The estimate in (2)
corresponds to its large-Nc prediction, i.e. g1 = 9/5 g A with an 
O(1/N2

c ) error [41,42]. The values of hA and g1 are also consis-
tent with constraint from the � width recently derived in [45]. 
Finally, the LECs b4 and b5 only contribute at O(ε4), and their im-
pact on our results is almost negligible. The intervals in (2) are 
based on a large-Nc calculation, which sets their difference and 
sum as b4 − b5 = 3/(2

√
2) c4 and b4 + b5 = 2

√
2/3 c�

11, see Ap-
pendix A. The value of c4 in the relation for b4 − b5 refers to 
O(ε2), see Table 1, which corresponds to the consistent order of 
c4 in the large-Nc relation and also avoids possible correlations 
with the redundant �-LECs absorbed into the ci at higher orders, 
leading to an estimate of about 1 GeV−1. In contrast, the unknown 
LEC appearing in the sum, c�

11, proportional to an isotensor contri-
bution, is fixed to zero. Choosing uncertainties generously to cover 
possible deviations in both cases (e.g. values obtained in π N →
ππ N [46]), we simply vary both combinations within ±5 GeV−1. 
We also checked that taking even larger intervals for these two 
parameters does not produce any noticeable effect in our results. 
In addition, we employ the following numerical values for the 
various LECs and masses entering the leading-order effective La-
grangian: Mπ = 139.57 MeV, Fπ = 92.2 MeV, mN = 938.27 MeV, 
m� = 1232 MeV [47], and g A = 1.289. The value for g A includes 
the Goldberger–Treiman discrepancy parameterized by d18, using 
a π N coupling constant g2/(4π) = 13.7 [33]. We do not study the 
effects of the uncertainties of those quantities, which are negligi-
ble in comparison to the other uncertainties encountered in the 
calculation.

In the following, we will proceed in close analogy to [25]. The 
LECs ci , di , and ei are matched order-by-order to the respective 
subthreshold parameters, where we employ the values determined 
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