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In this paper we entertain a simple idea that the action of ghost free massive gravity (in metric formula-
tion) depends not on the full structure of the square root of a matrix but rather on its invariants given by 
the elementary symmetric polynomials of the eigenvalues. In particular, we show how one can construct 
the quadratic action around Minkowski spacetime without ever taking the square root of the perturbed 
matrix. The method is however absolutely generic. And it also contains the full information on possible 
non-standard square roots coming from intrinsic non-uniqueness of the procedure. In passing, we men-
tion some hard problems of those apocryphal square roots in the standard approach which might be 
better tackled with our method. The details of the latter are however deferred to a separate paper.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The theory of General Relativity enjoys a superb agreement 
with experimental data all over a wide variety of scales. However, 
in the realm of cosmology we have a number of uneasy points 
including the origin of Dark Energy and the nature of Dark Mat-
ter. It gave rise to a plenitude of attempts to formulate a viable 
infrared modification of gravity which would hopefully do better 
in cosmology than GR. In particular, one of such directions which 
recently became very popular hinges upon giving a mass to the 
graviton.

The early days of massive gravity witnessed an almost detec-
tive story which starts from the original paper by Fierz and Pauli 
[1] which presented the linearised ghost-free massive deformation 
around flat space, and goes through infamous vDVZ discontinuity 
[2,3] of its massless limit, to the potential resolution via Vainshtein 
mechanism [4,5], and almost simultaneously to the claim of un-
avoidable reappearance of the ghost at non-linear level [6], and 
finally to the ultimate proposal by de Rham, Gabadadze and Tolley 
[7–11]. The model requires an additional (fiducial) metric which 
can either be Minkowski ημν as in the first papers on the sub-
ject, or can be arbitrary [12,13] and even dynamical with its own 
Einstein–Hilbert term [14] thereby producing a full-fledged bimet-
ric gravity.

E-mail addresses: agolovnev@yandex.ru (A. Golovnev), sigmar40k@yandex.ru
(F. Smirnov).

An ugly feature of the model is that the interaction poten-
tial is made of 

√
g−1 f , the square root of the matrix gμα fαν

which, strictly speaking, lacks both guaranteed existence (in the 
class of real matrices) and uniqueness, see also [15,16]. In this pa-
per we present a method of dealing with massive gravity without 
explicitly taking the square root of the matrix. In Section 2 we 
describe the action of massive gravity and its second order expan-
sion around flat space. In Section 3 we introduce the formalism 
of elementary symmetric polynomials of the eigenvalues, and also 
explain the problems with non-standard square roots in the usual 
formulation. In Section 4 we apply our method to quadratic gravity 
around flat space. Finally, in Section 5 we conclude.

2. Massive gravity

We consider the action of massive gravity in the following 
form:

S =
∫

dN x
√−g

(
R + m2

N∑
n=0

βnen(

√
g−1η)

)
(1)

where the spacetime is N-dimensional with metric gμν , R is its 
scalar curvature, and en(M)’s are elementary symmetric polyno-
mials of the eigenvalues λi of the matrix Mμ

ν :

en ≡
∑

i1<i2<...<in

λi1λi2 · · ·λin (2)
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and e0 ≡ 1 by definition. We see that β0 gives a pure contribu-
tion to the cosmological constant, while eN (

√
g−1η) = 1√−g

adds 
a mere constant to the action, and therefore it is totally irrelevant 
unless one wants to have a dynamical metric fμν instead of η for 
which it would contribute to its own cosmological constant. Terms 
with β1, . . . , βN−1 make up the potential term for the graviton.

Obviously, these polynomials can be described as coefficients in 
the characteristic polynomial of M:

det (M− λI) =
N∏

n=1

(λi − λ) =
N∑

n=0

(−λ)N−n · en(M). (3)

In particular, e1 is the ordinary trace

e1(M) =
∑

i

λi = [M] (4)

where [M] stands for the trace of M. In other words, we have 
a shorthand notation which reads [M] ≡ Mμ

μ , [M]2 ≡ (Mμ
μ)2, 

[M2] ≡Mμ
ν Mν

μ , etc. Then we have

e2(M) =
∑
i< j

λiλ j = 1

2

⎛
⎝(∑

i

λi

)2

−
∑

i

λ2
i

⎞
⎠

= 1

2

(
[M]2 − [M2]

)
. (5)

And one can prove a simple recurrent relation

en(M) = 1

n

n∑
i=1

(−1)i−1[Mi] · en−i(M), (6)

with en = 0 for n > N .
We will be interested only in the case of N = 4, for which we 

get from (6)

e3(M) = 1

6

(
[M]3 − 3[M][M2] + 2[M3]

)
(7)

and also

e4(M) = 1

24

(
[M]4 − 6[M]2[M2] + 3[M2]2

+ 8[M][M3] − 6[M4]
)

= det(M). (8)

The relevant parameters are β1, β2, and β3. The mass parameter m
corresponds to the mass scale of the graviton if the largest of βi ’s 
(for i = 1, 2, 3) is of order one.

In this paper we would be interested in linearised gravity 
around Minkowski spacetime, so that we take gμν = ημν + hμν

with a small perturbation h to the metric. We will raise and lower 
the indices of h by η. And then hμν gives the linear variation of 
g−1 with inversed sign gμν = ημν − hμν +O(h2), or with a better 
accuracy we have

gμαηαν = δ
μ
ν − hμ

ν + hμαhαν +O(h3). (9)

In the standard approach, the square root matrix 
√

g−1η would 
be found explicitly assuming the trivial root of the unity matrix: √
I= I. Then the first terms of the Taylor expansion

√
I− H = I− 1

2
H − 1

8
H2 +O(H3)

with H = h − h2 +O(h3) give the desired result when substituted 
into (4), (5), (7), and (8):

e1(

√
g−1η) = 4 − 1

2
hμ
μ + 3

8
hμνhμν +O(h3), (10)

e2(

√
g−1η) = 6 − 3

2
hμ
μ + 1

8
(hμ

μ)2 + hμνhμν +O(h3), (11)

e3(

√
g−1η) = 4 − 3

2
hμ
μ + 1

4
(hμ

μ)2 + 7

8
hμνhμν +O(h3), (12)

e4(

√
g−1η) = 1 − 1

2
hμ
μ + 1

8
(hμ

μ)2 + 1

4
hμνhμν +O(h3). (13)

Of course, the last expression (13) can also be derived from 
e4(

√
g−1η) = 1√−g

where

√−g = 1 + 1

2
hμ
μ + 1

8
(hμ

μ)2 − 1

4
hμνhμν +O(h3). (14)

Quadratic approximations to the βi terms in the action (1) are 
easily given by multiplying (10)–(12) by (14):

√−g · e1(

√
g−1η) = 4 + 3

2
hμ
μ + 1

4
(hμ

μ)2 − 5

8
hμνhμν +O(h3),

(15)
√−g · e2(

√
g−1η) = 6 + 3

2
hμ
μ + 1

8
(hμ

μ)2 − 1

2
hμνhμν +O(h3),

(16)
√−g · e3(

√
g−1η) = 4 + 1

2
hμ
μ − 1

8
hμνhμν +O(h3), (17)

√−g ·e4(
√

g−1η) = 1 exactly, and of course 
√−g ·e0 = √−g given 

by (14).
In this form, the Fierz–Pauli structure of the potential term is 

not yet obvious. However, we see that there is a non-vanishing first 
order contribution to the action around Minkowski:

V (h) ≡ m2
N∑

n=0

√−g · βnen(

√
g−1η)

= V (0) + m2
(

1

2
β0 + 3

2
β1 + 3

2
β2 + 1

2
β3

)
hμ
μ +O(h2)

In order for the flat space to be a solution, we require it vanishes
which gives a condition

β0 = −3β1 − 3β2 − β3.

Being plugged back into the action, it yields the familiar result:

V (h) − V (0) = m2

8
(β1 + 2β2 + β3) ·

(
hμνhμν − (hμ

μ)2
)

+O(h3).

Note that we followed the usual path. However, these calcula-
tions can be simplified by employing the well-known symmetry 
of bimetric theory gμν ↔ fμν , βn ↔ βN−n . It comes from the fact 
that en(M−1) is a polynomial of 1

λi
which can be obtained from 

eN−n(M) by dividing over detM. In particular,

√−g · e3(

√
g−1η) = e1(

√
η−1 g) = e1(

√
I+ h)

= 4 + 1

2
[h] − 1

8
[h2] +O(h3)

which also explains the mysterious disappearance of the (hμ
μ)2-

term from 
√−g · e3(

√
g−1η).
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