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We study sets of oscillators that have high quantum occupancy and that interact by exchanging quanta. 
It is shown by analytical arguments and numerical simulation that such systems obey classical equations 
of motion only on time scales of order their relaxation time τ and not longer than that. The results are 
relevant to the cosmology of axions and axion-like particles.
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The question under consideration here is: on what time scale 
do highly degenerate, interacting quantum oscillators obey classical 
equations of motion? Consider the broad class of systems that have 
a Hamiltonian of the form

H =
∑

j

ω ja
†
ja j + 1

4
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jka†

ja
†
kalan (1)

where the a j and a†
j are annihilation and creation operators sat-

isfying canonical equal-time commutation relations. N j = a†
ja j is 

the number of quanta in oscillator j. For the sake of definiteness, 
we have restricted ourselves in Eq. (1) to systems in which the to-
tal number of quanta N = ∑

j N j is conserved. The system states 
are given by linear combinations

|�(t)〉 =
∑

{N j}
c({N j}, t) |{N j}〉 (2)

of eigenstates |{N j}〉 of the N j for arbitrary distributions {N j} =
(N1, N2, N3, ...) of the quanta over the oscillators. In the Heisen-
berg picture, where the time-dependence of the state vectors has 
been removed, the annihilation operators a j(t) satisfy the equa-
tions of motion

iȧ j = [a j, H] = ω ja j + 1

2

∑

kln

�ln
jka†

kalan . (3)

The classical description of the system is obtained by replacing the 
a j(t) with c-numbers A j(t). They satisfy
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i Ȧ j = ω j A j + 1

2
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The quantum description always requires vastly more information 
than the classical one. To be specific, if the number of oscillators 
is M and the number of quanta N , the classical state is given by 
2M − 1 real numbers, whereas the quantum state is given by

D = (N + M − 1)!
N!(M − 1)! − 1 (5)

complex numbers. For example, if N = 100 and M = 10, D = 4.26 ·
1012. D increases extremely fast with increasing N and M . Clearly 
a huge simplification occurs if the system obeys classical equations 
of motion. The question is: when is this approximation valid?

The question is particularly relevant to axion cosmology [1–6]. 
The number of axions inside a co-moving volume of size (1 Mpc)3

today is N � 4 · 1081, assuming all the dark matter is axions and 
the axion mass is 10−5 eV. Before structure formation, their mo-
mentum dispersion is at most of order δp ∼ 1

t1

a(t1)
a(t) where t1 ∼

10−7 s is the age of the universe when the axion mass effectively 
turns on, and a(t) is the cosmological scale factor. Their quantum 
degeneracy, i.e. the average occupation number of those states that 
the axions occupy, is thus at least of order N ∼ 1061 [2]. Almost 
all discussion of the cosmology of axions [1,6,7] or axion-like [8]
particles assumes that the axion fluid obeys classical field equa-
tions. However, it was shown in Refs. [2,3] that the axion fluid 
thermalizes on a time scale shorter than the age of the universe 
after the photon temperature has dropped below approximately 
500 eV. When the axion fluid thermalizes, it satisfies all con-
ditions for Bose–Einstein condensation and this should therefore 
be the expected outcome on theoretical grounds. Furthermore it 
was shown [9] that Bose–Einstein condensation of cold dark mat-
ter axions explains precisely and in all respects the observational 
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evidence for caustic rings of dark matter in disk galaxies. The evi-
dence is summarized in Ref. [10]. Bose–Einstein condensation is a 
quantum effect. The argument that cold dark matter axions form a 
Bose–Einstein condensate was questioned [6] in part on the belief 
that the cosmic axion fluid satisfies classical field equations as a 
result of its extremely high degeneracy. This belief is also implicit 
in the many other discussions of dark matter axions, or axion-like 
particles, which describe the axion fluid by classical field equations 
[8]. So, we want to ask: is it true that highly degenerate Bosonic 
systems obey classical equations of motion merely because they 
are highly degenerate? And, if they obey classical field equations 
of motion for a while but not forever, what is the time scale over 
which classical equations of motion are obeyed?

When the interactions among the oscillators are turned off, i.e. 
when the �ln

jk = 0, and the degeneracy N is high, a classical de-
scription is in fact correct, and accurate to order 1/N . Indeed 
Eqs. (3) and (4) are linear in that case and admit solutions that 
have identical time dependence. If the expected values 〈N j〉 ≡
〈�(t)|N j |�(t)〉 and their classical analogues N j = A∗

j (t)A j(t) are 
equal initially, they remain equal ever after. In spite of its appar-
ent “triviality”, the non-interacting case describes a large number 
of interesting phenomena where the system has a non-trivial evo-
lution either because the initial state is a linear superposition 
of different eigenmodes (e.g. the beating of a double pendulum) 
or because the oscillation frequencies of the oscillators are time-
dependent (e.g. parametric resonance). Such phenomena are de-
scribed by classical physics when N is large. The production of 
cold axions by vacuum realignment in the early universe is a case 
in point. Because the effect is due to the time dependence of the 
axion mass and interactions do not play an important role, a clas-
sical physics calculation produces a correct estimate of the axion 
cosmological energy density from vacuum realignment [1]. Perhaps 
the successes of classical physics when �ln

jk = 0 and N → ∞ has 
led to a widely held belief that classical physics also gives a good 
description when �ln

jk 
= 0 and N → ∞.

When �ln
jk 
= 0, the 〈N j〉 are time-dependent because quanta 

jump between oscillators in pairs: one quantum jumps from oscil-
lator l to oscillator j while another quantum jumps from n to k. 
The classical N j(t) are also time-dependent when �ln

jk 
= 0. The 
question here is whether the time dependence is the same. As-
suming the initial state is far from equilibrium, there exists a time 
scale τ over which the distribution of the quanta over the oscil-
lators changes completely, i.e. each 〈N j〉 changes by order 100%. 
We call τ the relaxation time and � = 1/τ the relaxation rate. If 
the system is stable, it will move toward thermal equilibrium on a 
time scale of order τ . If the system is unstable, it will also move 
towards thermal equilibrium on a time scale of order τ provided 
the time scale of instability is long compared to τ .

There is a simple a priori reason to expect the quantum and 
classical descriptions to deviate from each other on a time scale 
of order τ . Indeed, the quantum description has the system move 
towards a Bose–Einstein distribution whereas the classical descrip-
tion has the system move towards a Boltzmann distribution. This 
argument is compelling but perhaps not precise enough to give us 
an estimate of the time scale of classicality. It allows the classi-
cal description to be valid, for example, on a time scale of order 
τ log(N ). For the systems that we are familiar with in the lab-
oratory, mainly superfluid 4He and dilute ultra-cold atoms, the 
quantum degeneracy is not much larger than one. So we have no 
compelling guidance from experiment to tell us about the behav-
ior of systems with huge degeneracy such as the cosmic axion fluid 
with N ∼ 1061.

To gain insight, consider the evolution equations for the oc-
cupation numbers. There are two cases to consider depending 

whether � < δω, where δω is the energy dispersion, or � > δω. 
In the first case, called the particle kinetic regime, we have

Ṅ j =
∑

kln

|�ln
jk|2πδ(ω j + ωk − ωl − ωn) ·

· [(N j + 1)(Nk + 1)NlNn −N jNk(Nl + 1)(Nn + 1)] (6)

for the operators N j(t) in the Heisenberg picture [3], and

Ṅ j =
∑

kln

|�ln
jk|2πδ(ω j + ωk − ωl − ωn) ·

· [(Nk + N j)Nl Nn − Nk N j(Nl + Nn)] (7)

for the c-numbers N j(t) [11]. In the second case, called the con-
densed regime, we have instead [3]

Ṅ j = i
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and

Ṅ j = i
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For a fluid of interacting particles, such as the cosmic axion fluid, 
the oscillators in Eq. (1) are labeled by the particle momenta �p =
2π
L (n1, n2, n3) where the nr (r = 1, 2, 3) are integers and L is the 

linear size of a large cubic volume V = L3 in which the associated 
quantum field satisfies periodic boundary conditions. The oscillator 
frequencies are ω�p = p2

2m in the non-relativistic limit. In the case of 
cosmic axions, the relevant interactions are λφ4 and gravitational, 
for which the couplings are respectively

�
�p3,�p4
λ �p1,�p2

= λ

4m2 V
δ�p1+�p2,�p3+�p4

(10)

and

�
�p3,�p4
g �p1,�p2

= −4πGm2

V
(

1

|�p1 − �p3|2 + 1

|�p1 − �p4|2 )δ�p1+�p2,�p3+�p4
.

(11)

In the particle kinetic regime, Eqs. (6) and (7) imply relaxation 
rates of order

�pk ∼ nσδvN (12)

where n is the physical space density, δv is the velocity disper-
sion, and σ is the appropriate cross-section. For λφ4 interactions, 
σλ = λ2

64πm2 . For gravity, the appropriate cross-section is that for 

large angle scattering, σg ∼ 4G2m2

(δv)4 , since forward scattering does 
not contribute to relaxation. In the condensed regime, Eqs. (8) and 
Eqs. (9) imply relaxation rates of order

�cr,λ ∼ nλ

4m2
and �cr,g ∼ 4πGn

(δv)2
(13)

respectively. The relaxation rate estimates appear very different in 
the two regimes. However they are related by �pk ∼ (�cr)

2/δω so 
that they agree with one another at the inter-regime boundary 
where � = δω. Axion dark matter was found [2,3] to thermalize in 
the condensed regime by their gravitational self-interactions when 
the photon temperature is of order 500 eV.

Eqs. (6) and (8) for quantum evolution closely resemble their 
classical counterparts, Eqs. (7) and (9). However, let us point out 
two significant differences between Eqs. (6) and (7). Similar dif-
ferences exist between Eqs. (8) and (9). The first and, as it will 
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