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We study the gauge invariance of the decay rate of the false vacuum for the model in which the scalar 
field responsible for the false vacuum decay has gauge quantum number. In order to calculate the decay 
rate, one should integrate out the field fluctuations around the classical path connecting the false and 
true vacua (i.e., so-called bounce). Concentrating on the case where the gauge symmetry is broken in 
the false vacuum, we show a systematic way to perform such an integration and present a manifestly 
gauge-invariant formula of the decay rate of the false vacuum.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

There have been continuous interest in the theoretically correct 
calculation of the decay rate of the false vacuum. One of the recent 
motivations has been provided by the discovery of the Higgs bo-
son at the LHC [1] and the precision measurement of the top quark 
mass at the LHC and Tevatron [2]; in the standard model, we are 
facing the possibility to live in a metastable electroweak vacuum 
with lifetime much longer than the age of the universe [3–9]. Fur-
thermore, the false and true vacua may show up in various models 
of physics beyond the standard model. One important example is 
supersymmetric standard model in which the electroweak symme-
try breaking vacuum may become unstable with the existence of 
the color or charge breaking vacuum at which colored or charged 
sfermion fields acquire vacuum expectation values; the condition 
that the electroweak vacuum has sufficiently large lifetime con-
strains the parameters in supersymmetric models [10–19]. Thus, 
detailed understanding of the decay of the false vacuum is impor-
tant in particle physics and cosmology.

In [20–22], the calculation of the decay rate of the false vacuum 
was formulated with the so-called bounce configuration which is 
a solution of the 4-dimensional (4D) Euclidean equation of mo-
tion connecting false vacuum and true vacuum (more rigorously, 
the other side of the potential wall). The decay rate of the false 
vacuum per unit volume is given in the following form:

γ = Ae−B, (1)
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where B is the bounce action, while the prefactor A is obtained by 
integrating out field fluctuations around the bounce configuration 
as well as those around the false vacuum.

In gauge theories, if a scalar field with gauge quantum num-
ber acquires non-vanishing amplitude at the true or false vacuum, 
the gauge, Higgs and the ghost sectors contribute to A. The decay 
rate should be calculated with the gauge-fixed Lagrangian which 
contains the gauge parameter ξ . In the present study, we con-
centrate on the gauge dependence (i.e., the ξ -dependence) of the 
decay rate of the false vacuum. Formally, the ξ -dependence of A
should cancel out exactly. This is due to the fact that the decay 
rate is derived from the effective action of the bounce configu-
ration, and also that the effective action for any solution of the 
equation of motion is assured to be gauge invariant [23,24]. In 
the actual calculation, however, the gauge independence is not 
manifest because the ξ -dependence should cancel out among the 
contributions of gauge field, Nambu–Goldstone (NG) boson, and 
Faddeev–Popov (FP) ghosts.1 In particular, the gauge boson and the 
NG mode, whose fluctuation operator is ξ -dependent, mix with 
each other around the bounce configuration. This makes the study 
of the decay rate complicated. Furthermore, it is difficult to check 

1 The gauge invariance of the effective potential of the model we consider was 
discussed in [25]; however, the scalar configuration was assumed to be space–time 
independent, and hence the result is not applicable to the present case. The gauge 
independence of the sphaleron transition rate was studied in [26] using functional 
determinant method which is also adopted in our analysis.
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the gauge independence even numerically because a stable numer-
ical implementation proposed so far requires ξ = 1.

In this letter, we show a procedure to integrate out the field 
fluctuations, which gives rise to a manifestly gauge invariant ex-
pression of the decay rate overcoming the difficulties mentioned 
above. In the current study, we concentrate on the case where

1. the gauge symmetry is U (1),2

2. there is only one charged scalar field � which affects the de-
cay of the false vacuum,

3. the U (1) symmetry is spontaneously broken in the false vac-
uum.

More general cases, in particular, the case where the U (1) symme-
try is preserved at the false vacuum, is discussed in [27].

First, let us explain the set up of our analysis. The Euclidean 
Lagrangian is given by

L = 1

4
Fμν Fμν + [(∂μ + ig Aμ)�†][(∂μ − ig Aμ)�]

+ V +LG.F. +Lghost, (2)

where Aμ is the gauge field, Fμν = ∂μ Aν − ∂ν Aμ , and V is the 
scalar potential. In addition, LG.F. and Lghost are the gauge-fixing 
term and the terms containing FP ghosts (denoted as c and c̄), 
respectively. We use the following gauge-fixing function3:

F = ∂μ Aμ − 2ξ g(Re�)(Im�) = ∂μ Aμ + i

2
ξ g(�2 − �†2

), (3)

with which

LG.F. = 1

2ξ
F2, (4)

and

Lghost = c̄
[
−∂μ∂μ + ξ g2(�2 + �†2

)
]

c. (5)

The scalar potential V has true and false vacua. We assume that 
the true and false vacua exist at the tree-level; we do not consider 
the case where the second vacuum is radiatively generated. The 
field configuration of the false vacuum is expressed as4

(Aμ,�)false vacuum = (0, v/
√

2), (6)

with v being a constant which is non-vanishing in this letter.
The false vacuum decay is dominated by the classical path, so-

called the bounce [20]. When v �= 0, the bounce solution, which is 
O (4) symmetric [28,29], is given in the following form:

(Aμ,�)bounce = (0, φ̄(r)/
√

2), (7)

where r ≡ √
xμxμ is the radius of the 4D Euclidean space. Here, 

the function φ̄ is a solution of the classical equation of motion:[
∂2

r � + 3

r
∂r� − V�

]
�→φ̄/

√
2
= 0, (8)

2 The application of our prescription to the case of non-abelian gauge symmetry 
is straightforward.

3 Previous studies used different type of the gauge-fixing functions: ∂μ Aμ −√
2ξ gφ̄Re�, around the bounce (i.e., � = φ̄/

√
2), and ∂μ Aμ − √

2ξ gvIm�, around 
the false vacuum (i.e., � = v/

√
2). Expanding the fields around the solution of the 

classical equation of motion, we obtain the same gauge-fixing functions as the pre-
vious studies at least at the one-loop level, although our gauge-fixing function can 
be used both around the bounce and around the false vacuum.

4 The field amplitude at the false vacuum (as well as the bounce configuration) 
may be shifted due to loop effects; the shifts are ξ -dependent in general. However, 
at the one-loop level, the shifts do not affect the extremum values of the effective 
action to which the decay rate of the false vacuum is related.

where V� denotes the derivative of the scalar potential with re-
spect to �. It also satisfies the following boundary conditions:

∂r φ̄(r = 0) = 0, (9)

φ̄(r = ∞) = v. (10)

We assume that φ̄ is a real function of r. At r → ∞, φ̄ settles 
on the false-vacuum; in such a limit, φ̄ (approximately) obeys the 
following equation:

∂2
r φ̄ + 3

r
∂r φ̄ − m2

h(φ̄ − v) � 0, (11)

where mh is the mass of the (massive) scalar boson around the 
false vacuum. Then, the asymptotic behavior of φ̄ can be expressed 
as

φ̄(r → ∞) � v + κ
e−mhr

r3/2
, (12)

with κ being a constant.
For the calculation of the decay rate of the false vacuum, it is 

necessary to integrate out the fluctuations around the bounce. The 
gauge and scalar fields are decomposed around the bounce as

Aμ = aμ, � = 1√
2

(
φ̄ + h + iϕ

)
, (13)

where the “Higgs” mode h and the “NG” mode ϕ are real fields. 
We expand the field fluctuations as5

aμ(x) 	αS(r)
xμ

r
Y J ,mA ,mB + αL(r)

r

L
∂μY J ,mA ,mB

+ αT 1(r)iεμνρσ V (1)
ν LρσY J ,mA ,mB

+ αT 2(r)iεμνρσ V (2)
ν LρσY J ,mA ,mB , (14)

h(x) 	αh(r)Y J ,mA ,mB , (15)

ϕ(x) 	αϕ(r)Y J ,mA ,mB , (16)

where Y J ,mA ,mB denotes the 4D hyperspherical harmonics; the 
eigenvalues of S2

A , S2
B , S A,3 S B,3 (with S A and S B being gen-

erators of the rotational group of the 4D Euclidean space, i.e., 
SU (2)A × SU (2)B ) are J ( J + 1), J ( J + 1), mA , and mB , respec-
tively. Notice that J = 0, 12 , 1, · · · . In addition, V (1)

ν and V (2)
ν are 

(arbitrary) two independent vectors, Lρσ ≡ i√
2
(xρ∂σ − xσ ∂ρ), and

L ≡ √
4 J ( J + 1). (17)

For J > 0, the fluctuation operator for (αS , αL, αϕ) is obtained 
as

M(S,L,ϕ)

J ≡

⎛⎜⎜⎜⎜⎝
−� J + 3

r2
+ g2φ̄2 − 2L

r2
2gφ̄′

− 2L

r2
−� J − 1

r2
+ g2φ̄2 0

2gφ̄′ 0 −� J + (�0φ̄)

φ̄
+ ξ g2φ̄2

⎞⎟⎟⎟⎟⎠

+
(

1 − 1

ξ

)
⎛⎜⎜⎜⎜⎜⎝

∂2
r + 3

r
∂r − 3

r2
−L

(
1

r
∂r − 1

r2

)
0

L

(
1

r
∂r + 3

r2

)
− L2

r2
0

0 0 0

⎞⎟⎟⎟⎟⎟⎠,

(18)

5 For notational simplicity, we omit the subscripts J , mA , and mB from the radial 
function α’s, and the summations over J , mA , and mB are implicit.
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