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We discuss the issue of complementarity between the confining phase and the Higgs phase for gauge 
theories in which there are no light particles below the scale of confinement or spontaneous symmetry 
breaking. We show with a number of examples that even though the low energy effective theories 
are the same (and trivial), discontinuous changes in the structure of heavy stable particles can signal 
a phase transition and thus we can sometimes argue that two phases which have different structures of 
heavy particles that cannot be continuously connected and thus the phases cannot be complementary. 
We discuss what this means and suggest that such “stability conditions” can be a useful physical check 
for complementarity.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

This note is an attempt to understand better the classic papers 
by Fradkin and Shenker [1], Banks and Rabinovici [2], ’t Hooft [3]
and Dimopoulos, Raby and Susskind [4,5] related to complemen-
tarity between the Higgs and confining phases in gauge theories.1

In model building, this is important because it sometimes happens 
that one takes a Higgsed theory that is perturbatively calculable 
for small couplings and pushes it into regions in which perturba-
tion theory is questionable. If the Higgs phase and confining phase 
are complementary, that is if there is no phase transition separat-
ing the Higgs phase and confining phase, then one may hope that 
this will give a picture of the physics that is qualitatively correct 
even if it is not quantitatively reliable. But if the two phases are 
genuinely different, then you have no right to expect that this pro-
cedure will make any sense at all.

A recent example is an SU (N + 3) × SU (3) × U (1) model that 
was suggested as a possible explanation of the di-photon excess at 
750 GeV [8]. The model has (N + 3, 3) scalar field ξ that is trying 
to break the symmetry down to SU (N) × SU (3) × U (1).2 In the 
limit in which only one of the couplings gets strong, we can think 
of the strong non-Abelian group as the gauge symmetry and treat 
the other approximately as a global symmetry.

If SU (3) gets strong and SU (N + 3) is global, the issue is easy. 
Here, I think that there is no hope of complementarity. Because in 
this case, in the Higgs phase, we have the SU (N + 3) × U (1) global 

E-mail address: hgeorgi@fas.harvard.edu.
1 See also [6]. One other reference that might be useful is [7].
2 There are no other matter fields that carry the SU (N + 3).

symmetry broken down to SU (N) × SU (3) × U (1). There is a coset 
space

SU (N + 3)

SU (N) × SU (3)
(1.1)

describing an (N, 3) of massless Goldstone bosons in the Higgs 
phase and there is no unbroken gauge symmetry And even if the 
SU (N + 3) is weakly gauged, the heavy vectors are light and still 
present in the low energy theory.

In the confining SU (3) theory, there is no reason for the global 
SU (N + 3) to break and no reason for anything to be light. So in 
this situation, the phases are distinguished by different symmetries 
and different massless particles in the low energy theory.

What happens if SU (N + 3) gets strong? Then presumably the 
SU (3) is unbroken both in the confining phase and in the Higgs 
phase. So this could perhaps be complementary. In the Higgs 
phase we have massless SU (N) gauge bosons, and the rest of the 
SU (N + 3) gauge bosons have mass of order gv . And �N is of the 
same order of magnitude times the exponential factor that goes 
to 1 as the coupling gets large. Thus in the gauge invariant spec-
trum there are glueballs and bound states of heavy vectors. As the 
coupling increases, all of these things get heavy! Likewise, in the 
confining phase of the full SU (N + 3) theory, we expect that all 
the particle states will have mass of the order of the SU (N + 3)

confinement scale or greater.
Thus in both the confining phase and the Higgs phase, the low 

energy theories are trivial. This is consistent with complementarity, 
and in this case, we believe that the phases are in fact comple-
mentary. However, in general, the equivalence of the effective low 
energy theories in the confining and Higgs phases [3] is not a suf-
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ficient condition for complementarity.3 And we suggest another 
diagnostic for complementarity that can be useful.

It may be that even when the low energy particles and sym-
metries acting on them are identical, there are sectors describing 
heavy particles in the two phases with different properties that 
distinguish the two phases. The property that we will focus on 
is stability. In a sense, a heavy stable particle is part of the ef-
fective low energy theory because if something puts one in the 
low-energy world, it stays there and its interactions do not involve 
any high-energies. [10] Stability conditions can be an easy and very 
physical way of identifying this situation.

It is important to note that stability for a particular set of pa-
rameters is not enough because complementarity is about how the 
physics changes as parameters change. We are interested in the 
situation in which stability is guaranteed independent of the phase 
space. An example of this is a theory with a conserved quantized 
charge. A conserved charge divides the space of physical states up 
into sectors with definite charge, separated by superselection rules. 
In a theory with a single conserved charge, the sector with the 
lowest non-zero positive charge must contain stable states — ei-
ther a single particle with the minimum charge or a collection of 
stable particles with total charge equal to the minimum. There is 
stability here, but it is not a property of the particle. We can cer-
tainly imagine changing the parameters in the theory continuously 
to make some a different particle carrying the conserved charge 
(not necessarily the same value of the charge) the lightest parti-
cle. And indeed, no single particle with the lowest charge has to 
exist at all. But at least some particles carrying the charge will al-
ways be stable so long as the charge is conserved. We might say 
that each sector of charged states is unconditionally stable, because 
there is always some combination of particles that is the lightest 
state with the appropriate charge.

As a very explicit (and fairly silly) example imagine a world 
with a conserved charge and three types of charged particle, A, 
B and C with charges 2, 3, and 5 respectively. The lowest posi-
tive charge is 1, and the stable states in the charge 1 sector could 
be ĀB , Ā ĀC or C̄ B B , depending on the particle masses. Charge 
conservation guarantees that two of the particle types are stable, 
and which two are actually stable depends on the masses, but the 
charge 1 sector is stable independent of the details of the masses..

If in a phase transition, the lowest positive charge changes, then 
even if the light particles in the two phases are qualitatively sim-
ilar, the possible structures of stable particles in the effective low 
energy theory must be different in the two phases. There is then 
no way to get continuously from one effective theory to the other, 
and the two phases cannot be complementary.

In the remainder of this note, we will give a series of examples 
based on familiar SU (N) groups. We hope they will convince the 
reader that this is an interesting approach.

2. SU(5) with a scalar 10

As a warm-up, and to get the reader used to the style of 
analysis, consider an SU (5) theory with a single 10 of scalars, 
ξ jk = −ξkj . The most general renormalizable Lagrangian has a 
global U (1) symmetry, and for a range of parameters, ξ develops 
a VEV that can be put in the form4

3 This has been emphasized in a very different context in [9].
4 See section A.2. Note that this statement is not trivial, and such details are too 

often ignored in treatments of Higgs theories. However, here, we want to focus on 
other things, so in this and subsequent sections, we will relegate the discussion of 
the potentials to Appendix A.

〈ξ〉 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −v

0 0 0 v 0

⎞
⎟⎟⎟⎟⎟⎠

(2.2)

This breaks the SU (5) gauge symmetry down to SU (3) × SU (2), 
under which ξ transforms as

(3,1) + (3,2) + (1,1) (2.3)

with the VEV in the (1, 1). The (3, 2) and the imaginary part of 
the (1, 1) are eaten by the Higgs mechanism producing a (3, 2)

and (1, 1) of massive vector bosons.
There is also a global U (1) symmetry that is a combination of 

the original global U (1) and the U (1) generator of the SU (5) that 
commutes with SU (3) × SU (2). The (1, 1) in (2.3) must be neutral 
under the unbroken symmetry, so the charges must look like

(3,1)2 + (3,2)1 + (1,1)0 (2.4)

in some arbitrary normalization, and because the U (1) charge of 
the multiplet must be the average charge of the multiplet af-
ter symmetry breaking, we know that ξ is a 106/5. The conden-
sate also breaks the global 5-ality of the SU (5) theory. down to 
triality×duality for the SU (3) × SU (2) In the Higgsed theory, the 
uneaten (3̄, 1) of scalars has triality 2 and charge 2, the (3, 2) mas-
sive gauge boson has triality 1, duality 1 and charge 1.

In both the Higgs phase and the confining phase, heavy parti-
cles carry a quantized conserved charge. Now we can examine the 
stable sectors in the Higgs phase and the confining phase. In this 
case, they match up perfectly. In the Higgs phase, all the triality 
and duality zero gauge singlet combinations like 3 (3, 1)2 scalars 
or 6 (3, 2)1 massive vector bosons all have U (1) charges which are 
multiples of 6. In the confining theory the 5-ality zero states are 
combinations of 5 106/5 scalars, which have the same property. 
The lowest positive charge is 6 in both cases.

Thus the stability conditions do not distinguish between this 
Higgs phase and the confining phase, and this is consistent with 
complementarity.

3. SU(5) with a scalar 15

Contrast the model discussed in section 2 with an SU (5) theory 
with a single 15 of scalars, ξ jk = ξkj . The most general renormaliz-
able Lagrangian again has a global U (1) symmetry, and for a range 
of parameters, ξ develops a VEV that can be put in the form5

〈ξ〉 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 v

⎞
⎟⎟⎟⎟⎟⎠

(3.5)

This breaks the SU (5) gauge symmetry down to an SU (4), under 
which ξ transforms as

10 + 4 + 1 (3.6)

with the VEV in the 1. The 4 and the imaginary part of the 1 are 
eaten by the Higgs mechanism producing a 4 and 1 of massive 
vector bosons.

There is also a global U (1) symmetry that is a combination of 
the original global U (1) and the U (1) generator of the SU (5) that 

5 See section A.3.
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